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Abstract. The SU(3) equations of state (P (T ), s(T ), I(T )) are calculated within the Field Correlator
Method both in the confined and the deconfined phases. The basic dynamics in our approach is contained
in the vacuum correlators, both of the colorelectric (CE) and colormagnetic (CM) types, which ensure CE
and CM confinement below Tc and CM confinement and Polyakov loops above Tc. The resulting values of
Tc and P (T ), I(T ), s(T ) are in good agreement with lattice measurements.

1 Introduction

The dynamics of QCD at small temperatures is known to
be governed by confinement, which establishes its scale,
connected to the string tension σ, and this scale defines
the nucleon mass and most of the energy density of the
visible part of the Universe.

The theory of confinement based on the vacuum aver-
ages of the field correlators in QCD to be called below the
Field Correlator Method (FCM), was suggested in [1–3],
see [4–6] for reviews.

The FCM is a natural extension of the OPE and the
QCD sum rule method to the case of the nonlocal vacuum
averages. It allows to include confinement in the whole
perturbative series, where all closed loops as a result of
FCM satisfy the area law with the string tension σ. As
a result all IR divergences are eliminated from the the-
ory, and the UV behavior stays intact, since at small dis-
tances σ disappears. The whole theory acquires a gauge
and Lorentz-invariant form in the path integral formal-
ism to be used below. FCM allows to obtain most im-
portant nonperturbative phenomena, e.g. two types of
confinement-colorelectric (CE) and colormagnetic (CM)
and follow the temperature evolution of both, including
the CE deconfinement, and the CM confinement in the
gluon plasma, which will be the main topic of this paper.

The idea that QCD might have a different phase with-
out confinement at large temperature, was suggested long
ago [7, 8].

This deconfinement phase was studied in the same
framework of the vacuum correlators, soon after the theory
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of confinement in [9–14], and it was finally elaborated
in [15–19], see the review in [20], where numerical cal-
culations were done and compared to existing data. The
theory of temperature transition in QCD given in [15–17]
is easily generalized to the case of nonzero density [18,19].

The main idea of the temperature transition in QCD
given in all these papers is based on two points:

1) From the basic thermodynamics law one can de-
duce, that the states with the minimal free energy (maxi-
mal pressure) are more probable. Therefore with the grow-
ing temperature the physical systems prefer configurations
with reduced correlators and larger entropy. As a conse-
quence the phase with zero colorelectric confining vacuum
correlators and condensates (and nonzero colormagnetic)
wins at some temperature, leading to the deconfining vac-
uum.

2) The lowest (also the dominant) Gaussian field corre-
lators provide two basic interactions: the linear confining
V lin

D (r) ∼ σr and two interactions with saturating max-
ima: V1(r, T ) and V sat

D (r, T ) where V (∞, T ) const. The
latter yields automatically the Polyakov lines La(T ) =
exp(− caV1(∞,T )

2T ), c3 = 1, c8 = 9
4 , which enter linearly

the thermodynamic potential and suppress its magnitude.
This is a basic point, since in our approach La(T ) appear
necessarily in F (T ) as factors in the deconfinement phase,
and it is not a model assumption.

As was shown in [16, 17], La(T ) alone give a reason-
able (within 20–25%) description of the P (T ), I(T ) etc.
in the deconfined phase, when all other nonperturbative
(e.g. colormagnetic) contributions are neglected.

In addition, this lowest approximation used in [16,17],
with free gluon and quark loops augmented by known
Polyakov loops was able to predict the main rough charac-
teristics, transition (crossover) temperature Tc and even
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its chemical potential dependence Tc(μ) [18, 19], as well
as pressure P (T ), trace anomaly I(T ) = ε − 3P , sound
velocity cs(T ) [16,17] etc. with reasonable accuracy.

An interesting development of the same deconfine-
ment theory is contained in [21–23], where the influence
of strong magnetic fields was taken into account, again in
good agreement with lattice data.

It is a purpose of the present paper to make a step
further, and to take into account another important non-
perturbative (np) interaction: the colormagnetic confine-
ment with the string tension σs. It was shown in [24] that
it resolves the Linde problem [25, 26] and creates bound
states in 3d [27]. Here we would like to study how it affects
the pure SU(3) thermodynamic potentials, in particular
P (T ), I(T ), latent heat, critical temperature Tc.

One of advantages of our analytic approach is that we
can analyze the Nc behavior of all quantities and compare
it to numerical studies [28,29].

The SU(3) gluodynamics is an important testing
ground for the theory, since it contains most np and per-
turbative characteristics of the full QCD. On the lattice
side already the first studies [30–32] revealed the phase
transition and important new physical effects both below
and above Tc. On the perturbative side the resummation
method of the Hard Thermal Loop (HTL), first devel-
oped in [33, 34], was used in [35, 36] in the SU(3) theory,
demonstrating a good agreement with lattice data at large
T , whereas at T < 4Tc one needs np contributions. On the
lattice side the most accurate data are obtained in [37],
see also [38,39] for a recent publication. In an alternative
way the SU(3) thermodynamics was studied in the frame-
work of effective theories in [40–47], in particular in the
PNJL model in [45–47], while in [44] the author exploited
the AdS/QCD formalism.

In what follows we shall start from the theory devel-
oped in [9–17], but make the dynamics in the confined and
deconfined phases more explicit.

Note, that the basic ground for this deconfinement the-
ory is already contained in the np confinement mechanism,
suggested in [1–3].

In this approach the confinement is a result of the np
color field correlators, which are vacuum averages of the
Euclidean colorelectric (CE) and colormagnetic (CM) field
〈tr Ei(x)Ej(y)〉, 〈tr Hi(x)Hj(y)〉, proportional to func-
tions (correlators) DE(x− y), DE

1 (x− y) and DH(x− y),
DH

1 (x − y), respectively.

g2

Nc
〈〈Tr Ei(x)ΦEj(y)Φ†〉〉 =

δij

(
DE(u) + DE

1 (u) + u2
4

∂DE
1

∂u2

)

+uiuj
∂DE

1

∂u2
, (1)

g2

Nc
〈〈Tr Hi(x)ΦHj(y)Φ†〉〉 =

δij

(
DH(u) + DH

1 (u) + u2 ∂DH
1

∂u2

)

−uiuj
∂DH

1

∂u2
. (2)

Here u = x − y and Φ(x, y) = P exp(ig
∫ x

y
Aμdzμ) is

the parallel transporter, needed to maintain the gauge in-
variance of relations (2).

The confining correlators DE ,DH generate the
nonzero values of CE and CM string tensions,

σE(H) =
1
2

∫
DE(H)(z)d2z. (3)

At zero temperature T both string tensions coincide and
σE forms the basic np scale, which defines all hadron
masses and the QCD scale in general.

To make the theory selfconsistent, one must calculate
DE(H), D

E(H)
1 , via σE = σH ≡ σ and prove that eq. (3)

is satisfied. This was done in [48–50], where it was shown
that the correlators are proportional to the Green’s func-
tions of gluelumps, calculated before on the lattice [51,52]
and analytically in the framework of our method [53].

The correlators DE and DE
1 produce both the scalar

confining interaction VD(r) and the vector-like interaction
V1(r).

VD(r) = 2ca

∫ r

0

(r − λ)dλ

×
∫ ∞

0

dνDE(λ, ν) = V
(lin)
D (r) + V

(sat)
D (r) (4)

V1(r) = ca

∫ r

0

λdλ

×
∫ ∞

0

dνDE
1 (λ, ν), cfund = 1, cadj = 9/4.

(5)

Separating from VD(r) the purely linear form V
(lin)
D (r)

and using the renormalization procedure for V1(r) with
account of the perturbative gluon exchange, V1(r) =
V sat

1 (r) + VOGE(r), one obtains the general structure of
the qq̄ or gg interaction in the region T < Tc:

V (r, T < Tc) = V lin
D (r)+V sat

D (r)+V sat
1 (r)+VOGE(r). (6)

It is interesting, that both parts, V sat
D +V sat

1 , saturating
at large r, compensate each other at small T , as shown in
the appendix, and one is retained with the standard linear
+ OGE interaction, in exact agreement with lattice and
experiment.

However at T ≥ Tc, when DE vanishes, one obtains
two terms, V sat

1 and VOGE , which together with σs define
the dynamics.

The np thermodynamics [16, 17, 20] based on the
field correlators (FC), considers the low-temperature
phase of SU(3), and of QCD in general, as the con-
fined phase, where the thermal degrees of freedom are
white hadrons, glueballs in the SU(3) case, where all FC
(DE ,DE

1 ,DH ,DH
1 ) are nonzero and therefore both CE

and CM (spatial) confinement are present.
Since DE

1 is nonzero above Tc, one may associate with
it and with DH , DH

1 the deconfined phase (phase II),
while the confined phase (phase I) contains all four cor-
relators DE , DE

1 , DH , DH
1 , so that the phase transition
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Fig. 1. Pressure P (T ) as function of temperature T for the
confined phase (glueballs) – solid line, and for the deconfined
phase (dashed line). The intersection point is at the critical
temperature Tc.

can be found from the intersection of two curves PI(T )
and PII(T ), as shown in fig. 1 and will be demonstrated
below.

In phase I the special role is played by DE(σE), which
ensure not only confinement in the usual sense, but also
chiral-symmetry breaking (CSB), [54–56]. As mentioned
above, the nonzero np part of DE

1 is almost totally com-
pensated by DE for T < Tc, while the perturbative part
yields gluon exchange contribution. The CM correlators
DH ,DH

1 ensure most part of spin-dependent forces [57–60]
and CM confinement.

With the growth of T for T < Tc nothing special hap-
pens, except that more and more excited states (glueballs
in SU(3)) participate in the partition function, ensuring
a steady but slow increase of the pressure Pconf ≡ PI(T )
with T . This corresponds to the vacuum with all correla-
tors nonzero.

An interesting feature of the glueball pressure Pconf

is that the standard Hardron Resonance Gas (HRG) ap-
proach is not able to sustain the growth of Pconf near Tc

and one is using the Hagedorn enhancement in addition
to HRG to comply with the lattice data. We show in the
paper, that instead of the Hagedorn factors, which we con-
sider inappropriate to us, as will be discussed below, one
can use the effect of string tension damping with tem-
perature near Tc, observed on the lattice [61–63], which
strongly increases Pconf at T � Tc and brings it in agree-
ment with lattice data [37].

The deconfined phase (phase II) corresponds to the
zero values of DE and σE , and nonzero DE

1 , DH , DH
1 . In

this case the physical degrees of freedom are gluons, inter-
acting via these correlators. At T = Tc the fast growing
Pdec keeps up with Pconf and the phase transition occurs,
as is shown in fig. 1.

One should stress the important role of V sat
1 , which

is compensated by V sat
D at T < Tc (see appendix),

but creates its own pair interaction V1(r, T ) for T >

Tc [16, 17, 64], with nonzero value at r → ∞, V1(∞, T ).
This term produces the Polyakov loop of gluon Ladj(T ) =
exp(−9V1(∞,T )

8T ), and Ladj = (Lf )9/4 increases with T and
tends to constant for T � 2Tc. This picture was success-
fully confronted with lattice data in [64].

One should note at this point, that Ladj(T ) ≡ Ladj re-
mains nonzero in the confined phase for T < Tc, where
it is expressed via the gluelump mass mglp ≈ 1GeV,
L<

adj(T ) ∼= exp(−mglp

T ), and thus Ladj(T ), T < Tc is
much smaller than Ladj(T > Tc), in agreement with lattice
data [65], as it was shown in the second refs. in [16,17].

However this L<
adj(T ) does not enter the thermody-

namic potential of the confined phase and its properties
are not of interest for us.

This general picture of the temperature dependence of
FC and σE , σH is in agreement with lattice measurements
of the correlators in [66,67], which demonstrate, that only
correlator DE vanishes at T ≥ Tc.

Till now nothing was said about the role of the spa-
tial string tension σs ≡ σH and the magnetic confinement
in general in the deconfinement transition. In the con-
finement region T < Tc, magnetic confinement is acting
mostly in the hadrons with angular momentum L > 0,
where it gives a small correction [68]. In the deconfined
region the situation is different. Here closed loop trajec-
tories of gluons and quarks for large T lie almost all in
d = 3 space, and therefore governed by the spatial con-
finement growing with T . This provides every gluon with
an effective mass mgl proportional to

√
σs(T ).

The same happens with space-like gluons, exchanged
by the quark or gluon currents, those acquire the np Debye
mass mH

D ≈ 2
√

σs(T ) [69, 70]. This phenomenon lifts the
IR divergences in the perturbative thermal series, noted in
the well-known Linde problem [25, 26], as is explained in
a recent paper [24], see also [15] for an earlier discussion.
At this point one should stress, that as found from d = 3
SU(3) and on the lattice [71], also within our method
as shown in [24], σs(T ) is growing with T as σs(T ) =
c2
σg4(T )T 2, and hence in our np method the CM gluon

screening masses scale as mgl ∼ g2(T )T , whereas in the
perturbative theory the effective gluon mass is of the CE
origin mE

D(T ) ∼ gT + O(g2), where O(g2) is of the np
origin.

From the practical point of view both definitions of the
effective gluon mass are close numerically, since g(T ) ∼
O(1) for T ∼ (300–500)MeV, and therefore an average
gluon mass, entering in the HTL [34–36] approach, may
be not far from the magnetic mH

D [69].
It is a purpose of the present paper to study the SU(3)

thermodynamics in the lowest np approximation (the so-
called Single-Loop Approach (SLA)) but taking into ac-
count the np correlators DE

1 and DH for T > Tc, which
produce Polyakov loops and σs, respectively. We calculate
from σs the gluon effective mass and find P (T ), I(T ) =
ε−3P . We define Tc, latent heat and other characteristics
and compare our results to the recent lattice measure-
ments in [37].

The paper is organized as follows. In the next section
the general field correlator formalism for thermodynamics
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is shortly summarized. In sect. 3 the effect of magnetic
confinement contributions is studied and estimated in the
SLA approximation. Section 4 comprises the notion and
numerical estimates of Polyakov loops, in comparison with
lattice data. Section 5 is devoted to the discussion of the
confinement phase and the temperature dependence of the
glueball pressure, in sect. 6 the results of the calculation
of Tc, pressure, and trace anomaly are given, while the
sect. 7 contains a summary and prospectives.

2 General formalism

We are using the thermal background perturbation theory
for the gluons in the deconfined phase II, developed in [16,
17], where vacuum background fields are denoted by Bμ

and perturbative part by aμ. To the lowest order in gaμ

one can write for the B-dependent free energy

1
T

F gl
0 (B) =

1
2

ln det G−1 − ln det(−D2(B)) =

= Sp
{
−1

2

∫ ∞

0

ξ(s)
ds

s
e−sG−1

+
∫ ∞

0

ξ(s)
ds

s
esD2(B)

}
, (7)

while the vacuum averaged free energy is

−〈F gl
0 (B)〉B

T
= ln

〈
exp

(
−〈F gl

0 (B)〉
T

)〉

B

. (8)

Using the cluster expansion in the exponent

〈exp f〉B = exp

( ∞∑
n=1

〈〈fn〉〉 1
n!

)

= exp
{
〈f〉B +

1
2
[〈f2〉B − 〈f〉2B ] + O(f3)

}
, (9)

one obtains the lowest order one-loop expression for
〈F gl

0 (B)〉B ,

〈F gl
0 (B)〉B = −T

∫
ds

s
ξ(s)d4x(Dz)w

xxe−K

×
[
1
2
tr〈Φ̃F (x, x)〉B − 〈trΦ̃(x, x)〉B

]
. (10)

Here the winding path integration is

(Dz)w
xy = lim

N→∞

N∏
m=1

d4ζ(m)
(4πε)2

∑
n=0,±,...

d4p

(2π)4

× exp

[
ipμ

(
N∑

m=1

ζμ(m) − (x − y)μ − nβδμ4

)]

(11)

and Φ̃(x, x) is the adjoint parallel transporter

Φ̃(x, y) = P exp
(

ig

∫ x

y

B̃μdzμ

)
, (12)

while Φ̃F contains additional gluon spin factor, PF =
exp(2ig

∫ s

0
F̃dτ), which we shall replace by unity in the

lowest approximation1. As a result the gluon pressure
PglV3 = −〈F gl

0 (B)〉B can be written as

Pgl = (N2
c − 1)

∫ ∞

0

ds

s

∑
n=0,±1,±2,...

G(n)(s). (13)

G(n) in (13) is defined as

G(n)(s) =
∫

(Dz)w
one−K〈t̂raW (Cn)〉, (14)

where

K =
1
4

∫ s

0

(
dzμ(τ)

dτ

)2

dτ, (15)

〈t̂raW (Cn)〉 =
tra

(N2
c − 1)

〈Φ̃(x, x(n))〉. (16)

Note here, that the generic path of the gluon starts at
the point x and ends at the point x(n) = xμ + nβ · δμ4, as
shown in (11), so that one has a closed loop in 3d, while
the projection on the 4-th axis yields the Polyakov loop,
Ladj. Indeed, for the propagator G(x, y) the Matsubara
assignment in (11) yields a sum of end points y

(n)
4 = y4 +

nβ, n = 0,±1, . . . which for the coinciding x4 = y4 results
in an infinitive series of open contours [y4, y4 + nβ], with
the unitary gauge equivalent points U(y4 + nβ) = U(y4).
Now multiplying the contours with the product of gauge
invariant lines (12), Φ̃(y4, y4 + nβ) × Φ̃(y4 + nβ, y4) = 1,
and taking the vacuum average, one obtains the product of
the closed Wilson loop W3 and the Polyakov line Ladj(T )
(modulo insignificant correlation between the CE contents
of Ladj and CM of W3).

As a result (16) can be written as

tra

(N2
c − 1)

〈Φ̃(x, x(n))〉 = L
(n)
adj(T )〈W3〉, (17)

where 〈W3〉 is the spatial area law factor

〈W3〉 = exp(−σsA3) (18)

and A3 is the minimal area in the 3d space of the loop,
formed by trajectories zi(τ), 0 ≤ τ ≤ s, i = 1, 2, 3.

It will be essential that σs(T ) grows with T as [24,71]

σs(T ) = c2
σg4(T )T 2, (19)

where cσ is a dimensionless constant defined in a np way.
The form (19) was found on the lattice [71] with cσ =
0.566 ± 0.013. A similar form was found in d = 4 [24, 70],
using the gluelump Green’s function method [51–53]. For
T < Tc, σs tends to a constant, σs = σ(E).

1 Here P , PF are ordering operators for the fields B̃μ and
F̃μν , respectively.
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We turn now to the first factor on the r.h.s. of (17).
As is shown in [16, 17], for T > Tc one can express L

(n)
adj

via the CE correlator DE
1 (z),

L
(n)
adj = exp

(
−9

4
JE

n

)
,

JE
n =

nβ

2

∫ nβ

0

dν

(
1 − ν

nβ

)

×
∫ ∞

0

ξdξDE
1

(√
ξ2 + ν2

)
. (20)

It is argued in [16,17], that a good approximation for T <
1GeV is JE

n
∼= nJE

1 , which we shall use in what follows.
The integral (Dz4)w

on in (14) for T > Tc can be done
explicitly, yielding [16,17]

G(n)(s) =
1√
4πs

e−
n2

4T2s G3(s)L
(n)
adj, (21)

where G3(s) is

G3(s) =
∫

(D3z)xxe−K3d〈W3〉, (22)

and as a result the gluon pressure in the phase II has the
form

Pgl =
N2

c − 1√
4π

∫ ∞

0

ds

s3/2
G3(s)

∑
n=0,1,2,...

e−
n2

4T2s L
(n)
adj, (23)

Fgl = −PglV3. (24)

3 Calculation of the spatial loop

We consider here G3(s), eq. (22), which corresponds to
the 3d loop, which is governed by the spatial confinement
with the string tension σs(T ). It is clear, that gluons on
the opposite sides of the loop are connected by the con-
fining string, and we transform the integral (22) to make
it explicit. To this end we write the identity

(D3z)xx = (D3z)xud3u(D3z)ux, (25)

where we choose the point ui as ui = zi( s
2 ).

Using u3 ≡ t as the Euclidean time in 3d, one can
write

(Dz3)x3u3e
−K3 =

1√
2πs

, K3 =
1
4

∫ s/2

0

(
dz3

dτ

)2

dτ.

(26)
As a result G3(s) acquires the form

G3(s) =
∫

(D2z)xud2u(D2z)uxe−K1−K2〈W3〉
dt

2πs
. (27)

Using (18) one can express 〈W3〉 in terms of the instan-
taneous confining potential Vconf = σs|r1 − r2|, 〈W3〉 =
exp(−Vconft).

One can write K1, K2 as follows:

K1 + K2 =
1
4

∑
i=1,2,

∫ si

0

dτi

(
dz(i)

dτ

)2

(28)

and introducing ωi instead of si, si = t
2ωi

one obtains in
the exponent

K1 + K2 + Vconf(η)t

→
(

p2
1

2ω1
+

p2
2

2ω2
+

ω1 + ω2

2
+ Vconf(η)

)
t, (29)

where η = |z(1) − z(2)|. On the other hand, one can intro-
duce the unit operator

1 = 2
∫

ds1ds2δ(s1 + s2 − s)δ(s1 − s2)

=
∫

tdω1

ω2
1

δ

(
t

ω1
− s

)
dω2δ(ω2 − ω1)

=
tdω

ω2
δ

(
t

ω
− s

)
. (30)

One can rewrite (27) with (30) as

G3(s) =
∫

t dtdω

2πsω2
δ

(
t

ω
− s

)
d2u〈xx|e−H(P)t|uu〉, (31)

where

H(P) =
P2

4ω
+

p2

ω
+ ω + Vconf , (32)

and finally, integrating out the free center-of-mass coordi-
nate ∫

d2u〈xx|e−H(P)t|uu〉

=
∫

d2u
d2P
(2π)2

eiP(x−u)〈0|e−H(P)t|0〉

= 〈0|e−H(0)t|0〉, (33)

where, in 〈0|, |0〉, there enters only the wave function of
relative motion.

The eigenvalues of H(0) can be found in the same way,
as it was done in [27], using the local limit of H(0) in ω
at ω = ω0,

M = 4ω(0)
ν ; ω(0)

ν =
(aν

3

)3/4 √
σadj,

σadj =
9
4
σs, a0 = 1.74, (34)

which yields the lowest eigenvalues

ω
(0)
0 ≈ √

σs, M0 = 4
√

σs.

Finally one obtains

G3(s) =
1√
πs

∑
ν=0,1,...

ψ2
ν(0)e−Mνω(0)

ν s (35)
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and ψ2
ν(0) = cνσs, where the dimensionless constant cν

has to be defined, solving the wave equation with the
Hamiltonian H(0).

Hence the lowest mass squared in (35) is

μ2
0 = M0ω

(0)
0

∼= 4σs ≈ m2
D, (36)

where mD is the screening mass found in [69]. One can
check the general expression (35) in the free case, σs ≡ 0.
In this case

∑
n ψ2

n(0) = d2p
(2π)2 and Mn, ω

(0)
n from H0 =

p2

ω + ω, eq. (32), are ω0 = |p|, M0 = 2p and one obtains
the exact free result.

G
(0)
3 (s) =

1√
πs

∫
d2p

(2π)2
e−2p2s

=
1√
πs

1
8πs

=
1

(4πs)3/2
, (37)

which using (21) and (13) yields the Stefan-Boltzmann
result (Ladj ≡ 1)

P
(0)
gl =

N2
c − 1

(4π)2

∫ ∞

0

ds

s3

∑
n=±1,±2

e−
n2

4T2s

=
2(N2

c − 1)T 4

π2

∞∑
n=1

1
n4

=
(N2

c − 1)T 4π2

45
. (38)

Using (35) one can write P
(1)
gl as (keeping the only term

with ν = 0, ψ2
0(0) ≡ c̄σs)

P
(1)
gl =

N2
c − 1

(4π)2

∫ ∞

0

ds

s2
c̄σse

−m2
D(T )s

×
∑

n=±1,±2

e−
n2

4T2s L
(n)
adj. (39)

From the integral representation of the modified Bessel
function

Kν(z) =
1
2

(z

2

)ν
∫ ∞

0

e−t− z2
4t

tν+1
dt, (40)

one arrives at the following form (taking into account that
L

(n)
adj ≈ (Ladj)n for T � λ−1 = 1GeV, as is shown in [16,

17]):

P
(1)
gl (T ) =

(N2
c − 1)c̄σsmDT

2π2

×
∑

n=1,2,...

1
n

K1

(nmD

T

)
(Ladj)n. (41)

On the other hand, one can use the relation

∑
n=1,2,...

Kν(nz)
nν

=
√

π

Γ
(
ν + 1

2

)
(2z)ν

×
∫ ∞

0

t2νdt√
t2 + z2(exp(

√
t2 + z2) − 1)

,

(42)

and one obtains

P
(1)
gl (T )=

(N2
c − 1)c̄σsT

2

2π2

×
∫ ∞

0

t2dt√
t2+(mD

T )2
1

exp(
√

t2+(mD

T )2+a) − 1
,

(43)

Ladj = exp(−a).
Note, that we have kept the lowest eigenvalue ν = 0

in (35), in a more general case one should replace c̄ → c̄ν ,
mD → m

(ν)
D and sum over ν, ν = 0, 1, 2, . . . However,

having in mind, that m
(ν)
D strongly rise in magnitude with

growing ν, and they enter in the exponent in (43), one can
expect that the first term with ν = 0 yields a reasonable
approximation for not large T . In what follows we keep
the form (43) with c̄ being a free constant, to be fixed by
comparison with lattice data at some point of T .

One can simplify the answer in the case, when the
spatial confinement has the form of an oscillator potential.
In this case one can write G(n)(s) in (15) as

G(n)(s) =
∫

(Dz4)w
0n(Dz3)00(Dz1)00(Dz2)00e−K

=
1

4πs
e−

n2

4T2s G2(0, 0, s), (44)

G2(0, 0, s) =
∫

(Dz1)00(Dz2)00e−K1−K2

=
M2

0

4π sh M2
0 s

. (45)

Here M0 = ω is the lowest mass (excitation) in the os-
cillator potential, which we might associate with the low-
est screening mass mD.

As a result one obtains the gluon pressure in the form

P
(OCS)
gl =

2(N2
c − 1)

(4π)2

∞∑
n=1

L
(n)
adj

∫ ∞

0

ds

s2
e−

n2

4T2s
M2

0

sh M2
0 s

.

(46)
One can check, that for M0 � T (46) yields the Stefan-
Boltzmann result (38), augmented by the term Ln.

To make a connection with the realistic case of linear
confinement, V (r) = σsr, one can make a substitution
σsr → σs

2 ( r2

γ + γ), which after variation in the parameter
γ yields back the linear potential. The use of this trick
was checked to give approximately 5% accuracy in the
spectrum calculations. As a result one obtains a crude
approximation for G3(s), eq. (22) of the linear potential

Glin
3 (s) → 1

2
(γG

(0)
3 (s) +

1
γ

G
(OSC)
3 (s))

→ 1
(4πs)3/2

√
M2

0 s

sh M2
0 s

(47)

and as a result one obtains

Pgl =
2(N2

c − 1)
(4π)2

∞∑
n=1

L
(n)
adj

∫ ∞

0

ds

s3
e−

n2

4T2s

√
M2

0 s

sh M2
0 s

. (48)
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As shown in (35), (36) the lowest mass μ0, which enters
in the exponent, is equal to 2

√
σs, which exactly coincides

with the Debye screening mass mD, found in [69] from the
CM confinement, being in good agreement with lattice
data. The corresponding exponent from the square root
term in (48) is exp(−M2

0 s
2 ), which yields M2

0 = 2μ2
0 = 8σs,

and we take this as the lower limit in our calculations.
In what follows we shall use (48) with M0 ≈ mD, and

we shall find that the results of (46) and (48) are rather
close numerically.

4 Polyakov lines in the Field correlator
approach

As was discussed in the introduction, the CE gluon cor-
relators produce the potential V sat

1 (r) = V1(∞) + v(r),
eq. (5), so that in the gg Green’s function acquires the
factor Λ ≡ exp(−ca

V1(∞)
2 t4) for each gluon, when one con-

siders v(r) as a perturbation.
However, in the confined region V sat

1 is screened by
the VD(r, T ), and therefore this factor Λ appears only in
the deconfined phase, where it appears in the form of the
Polyakov line.

In the Matsubara representation of the temperature
Green’s function G(n)(s), eq. (14), one has the phase JE

n ,
eq. (20) which tends to nV1(∞)

2T for T → 0, in agreement
with Λ, when t4 = 1/T .

Thus eq. (20) defines the Polyakov loop at T > 0 and
also at T > Tc via V1(r, T ). namely

L
(n)
adj = exp

(
− 9n

8T
V

(n)
1 (∞, T )

)
, (49)

V
(n)
1 (∞, T ) =

∫ n/T

0

dν

(
1 − νT

n

)

×
∫ ∞

0

ξdξDE
1

(√
ξ2 + ν2

)
. (50)

The important property to be used in what follows,
is the short-distance behavior of DE

1 (x), which is concen-
trated at distances |x| � λ = 0.2 fm and is assumingly not
affected by T for T < 1/λ ∼= 1GeV [53,64,70]. In this case
one can make a replacement, n → 1 in (50), and omit the
superscript n in V

(n)
1 (r, T ), as we shall do in what follows

writing

L
(n)
adj = (Ladj(T ))n, Ladj(T ) = exp

(
−9V1(∞, T )

8T

)
,

(51)
where V1(∞, T ) is given in (50) via the correlator DE

1 (x).
Note two important consequences of our theory for

L(T ): first of all the Z(3) symmetry of the SU(3) theory
is spontaneously broken by the vacuum field correlator,
which fixes one of 3 branches with N = 0.

Secondly, the Casimir scaling for LJ (T ) observed on
the lattice [65], appears naturally, since V

(a)
1 (T ) is pro-

portional to ca.

Fig. 2. Polyakov line Ladj(T ): the solid line is our modified

L
(mod)
adj (T ) from eqs. (57), (58) and filled dots are for the lattice

data [65] with Nτ = 4.

To compute P (T ), I(T ) etc. numerically we need the
explicit form of V1(∞, T ) or D1(x − y). In the phase
II for T < Tc this can be derived, using the gluelump
Green’s functions and eigenvalues [53]. Using the same
form also for T > Tc it was found in [64], that the
function V1(∞, T ), agrees approximately with the lattice
free energy F1(∞, T ). In what follows we shall use this
form, however we shall take into account that on general
grounds F1(∞, T ) < V1(∞, T ) and the negative values
of F1(∞, T ) for large T 
 Tc do not provide negative
V1(∞, T ) and hence L(T ) ≤ 1 [64]. One can also argue,
that our L(T ) < Llat(T ).

The Polyakov line can also be obtained from the
gluelump form of the correlator D1, which can be writ-
ten according to [64] as

D
(np)
1 (x) =

A1

|x| e
−M1|x| + O(α2

s),

A1 = 2C2αsσadjM1, x ≥ 1/M1. (52)

and the nonperturbative part of V1 (note that D1 contains
also the perturbative gluon exchange correlator), which for
T = 0 has the form (3), for T > 0 can be written as

V
(np)
1 (r, T ) = A1

∫ 1/T

0

(1 − νT )dν

∫ r

0

ξdξe−M1

√
ξ2+ν2

√
ξ2 + ν2

,

(53)
which yields at r → ∞

Lf = exp

(
−V

(np)
1 (∞)

2T

)
,

V
(np)
1 (∞) =

A1

M2
1

[
1 − T

M1
(1 − e−M1/T )

]
. (54)

One can also use directly its lattice renormalized val-
ues, and we shall prefer the Lren(T ) from [65], where
Lren

a (T ) were found for different SU(3) representations a,
and the Casimir scaling was established with good accu-
racy.

The comparison of Ladj(T ) in the region T > Tc with
the lattice data [65] in fig. 2 shows a reasonable agreement.
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Fig. 3. The pressure P (T )/T 4 in the SU(3) theory in the
deconfined phase. The solid line is for the modified oscillator
confinement eq. (48), and filled dots are for the continuum
lattice data [37].

One can compare (53), (54) with the lattice data for
the pair free energy F1 [65], which yields for V1(∞, T ) the
value V1(∞, Tc) ≈ 0.5GeV (with 10% accuracy) and de-
creasing with growing T , and we approximate V F

1 (∞, T )
as obtained from F1

V F
1 (∞, T ) =

0.175GeV
1.35 T

Tc
− 1

, T ≥ Tc. (55)

At this point one should stress, as was also done in [64]
the difference between V1(r, T ) and F1(r, T ), measured on
the lattice, which can be written as

e−F1(r,T )/T =
∑

n

e−En(r,t)/T , (56)

and E0(r, T ) can be associated with V1(r, T ), while higher
in n states make F1 smaller than V1, and finally can make
it negative at larger T , as it was found on the lattice.

As is seen in (53) and (54), V1 is always positive and
therefore our Li, where i = f, adj, are less than 1, whereas
Llat

i can exceed unity at large T .
To account for the difference V1 and F1 we can use

another form V
(mod)
1 (∞, T ), where V

(mod)
1 > F1, namely

V
(mod)
1 (∞, T ) =

0.13GeV
T/Tc − 0.84

. (57)

In fig. 2 we show both the lattice data for Ladj(T )
taken from [65] and our modified L

(mod)
adj (T ), calculated as

L
(mod)
adj (T ) = exp

(
−9V

(mod)
1 (∞, T )

8T

)
. (58)

One can see a reasonable agreement between two lines,
satisfying the required relation L

(mod)
adj (T ) � Llat

adj(T ). The
form (58) is used below in our calculations of all thermo-
dynamic functions.

The resulting pressure Pgl(T ) for T ≥ Tc is shown
in fig. 3. One can see, that the use of L

(mod)
adj (T )

from (58), (57) and of the magnetic confinement, eq. (48)
gives a reasonable agreement with lattice SU(3) data
from [37].

Table 1. Glueball masses from FCM as compared to lattice
data.

JPC M(GeV) Lattice data

ref. [72,73] ref. [75] ref. [76] ref. [77]

0++ 1.58 1.710(50)(80) 1.73 ± 0.13 1.54 ± 0.038

0++∗ 2.71 2.67 ± 0.31 2.79 ± 0.15

2++ 2.59 2.39 2.40 ± 0.13 2.19 ± 0.07

2++∗ 3.73 3.29 ± 0.16 2.85 ± 0.31

0−+ 2.56 2.56 2.59 ± 0.17 2.10 ± 0.24

0−+∗ 3.77 3.64 ± 0.24

2−+ 3.03 3.04 3.1 ± 0.18 2.99 ± 0.27

2−+∗ 4.15 3.89 ± 0.23

3++ 3.58 3.67 3.69 ± 0.22

1−− 3.49 3.83 3.85 ± 0.24

2−− 3.71 4.01 3.93 ± 0.23

3−− 4.03 4.20 4.13 ± 0.29

5 The confinement sector

We now turn to the confined gluonic phase, which consists
of the two-gluon, three-gluon, etc. glueballs, which can be
calculated analytically via σ(E) [72,73]. The corresponding
pressure of the noninteracting gas of glueballs of the i-th
kind with mass mi is [74]

P
(i)
gb =

giT
2

2π2

∞∑
n=1

m2
i

n2
K2

(nmi

T

)
, (59)

where gi is the multiplicity of the i-th glueballs.
We have disregarded in (59) the contribution of the

possible real or virtual glueball decay products, as well as
the interaction between glueballs, which disappears in the
large Nc limit.

The total pressure, Pconf , in the SU(3) case is given
by the sum of the glueball terms (59), namely

Pconf =
∑

i

P
(i)
gb . (60)

The situation here depends on the spectrum of low-
est glueballs, which was found repeatedly on the lat-
tice [75–77] and also analytically in the Field Correlator
Method [72, 73], see comparison in table 1, which shows
a remarkable agreement of almost all states. One expects
that, the total contribution of the excited glueballs might
be important in the region near Tc, and the question
arises, how one approximates the asymptotic behavior of
the spectrum.

A most detailed lattice analysis of the SU(3) thermo-
dynamics done recently in [37], reveals that e.g. the trace
anomaly below and near Tc can be described by a com-
bination of glueball and Hagedorn contributions [78] (see
figs. 3 and 4 in [37]).

In a recent analysis of the SU(2) and SU(3) gluody-
namics in [79] a striking agreement was found with the
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contribution of the corresponding glueballs plus Hagedorn
spectrum.

In an accurate analysis of the entropy density s in [80]
it was found, that 0++ and 2++ glueballs contribute to
s/T 3 less than 25% at T = Tc, and only the combination
of glueballs with mass less than 2M0 (two-particle thresh-
old) and the Hagedorn spectrum corresponds to the lattice
data.

However in the nf = 2 + 1 thermodynamics the Hage-
dorn spectrum is not used, and instead one to two thou-
sand states are taken into account from the experimental
spectrum. Therefore the problem of asymptotically high
states calls for additional studies.

In our paper we turn attention of the reader to another
possible source of the hadron pressure amplification —a
possible temperature modification of hadron masses.

Therefore we turn to another explanation of the high
growing glueball contribution to Pconf near Tc. Namely,
it was repeatedly found on the lattice (see e.g. [61–63]
and [81]), that the string tension σE starts to depend on
T in the region 0.7Tc ≤ T ≤ Tc, and tends to a value
σE(Tc), which is in the region 0.2σ0 ≤ σE(Tc) ≤ 0.5σ0.
here σ0 = σE(T = 0). At this point one should take into
account, that the theory of QCD with massless quarks
and gluons has the only scale parameter, which can be
chosen as σ and all spectra can be defined in terms of σ
as mi = γiσ, where γ are numbers (it is important, that
also ΛQCD entering in αs can be defined in terms of σ, as
was shown numerically in the first reference in [48–50]).
This fact is also supported by the analytic calculations
in [72,73], where all glueball masses are expressed in terms
of σ, being in good agreement with numerical lattice data,
as seen in table 1. Therefore, if σ = σ(T ) is decreesing with
T , then it is clear physically, that glueball masses decrease

as mi(T ) = a(T )mi(0), where a(T ) =
√

σE(T )
σ0

.
As a result in (59) one obtains a strong amplification

of the glueball pressure. Indeed, writing a(T ) as

a(T ) =

√
1 −

(
T

Tc + b

)2

, (61)

one obtains the pressure Pconf in (60) for 12 and 2 lowest
glueballs, shown in fig. 4.

One can see in fig. 4 the resulting Pconf(T ) as a func-
tion of T in comparison with the lattice data [37] for two
cases: 1) when only 0++ and 2++ glueballs are retained,
and 2), when 12 lowest glueball states are included with
a(T ) (61) and b = 0.15Tc. One can see a good agreement
of Pconf (T ) in case 2) with the lattice data from [37] for
the chosen value of b. One can compare our resulting be-
havior of σ(T )/σ0 with the lattice measurements of the
confinement attenuation in [61–63,81], which shows a rea-
sonable agreement. As an example we plot in fig. 5 our
σ(T ) together with the numerical data from the lattice
483 × 12 in [62].

Thus we conclude, that there is no need to exploit the
Hagedorn mechanism for the explanation of the pressure
Pconf near Tc.

Fig. 4. Pressure in the confining phase. The dashed line is for
2 lowest glueballs (0++ and 2++) and the solid line is for 12
glueballs. The filled dots are for the lattice data [37].

Fig. 5. The solid line is for the string tension σ(T )/σ(0) calcu-
lated from eq. (61), and dots are for the lattice data [62] with
Nt = 12.

6 Results for the SU(3) phase transition and
trace anomaly

In this section we combine together our results for the con-
fined and deconfined phases. In so doing we calculate also
the trace anomaly I(T )

T 4 = ε−3P
T 4 , and the entropy density

s(T ) = (dP (T )
dT ) 1

T 3 .
We calculate Pgl(T ), as in (48) with the account of

the Polyakov loops Ladj(T ), given in (57), (58) and the
colormagnetic confinement as in (48). The comparison of
our Pgl(T ) and the corresponding lattice values from [37]
in fig. 3 shows a good agreement in the interval Tc ≤
T ≤ 10Tc. For Pconf eqs. (59) and (60) are used with
masses mi(T ) = a(T )mi(0), where a(T ) is given in (61)
and masses mi(0) in table 1, the first column.

In Pconf we distinguish two cases with number of glue-
balls equal to a) 2 and b) 12, and a(T ) given in (61).
These analytic results are shown in fig. 4 in comparison
with lattice data from [37].

We are using the phase transition condition, which can
be written as

Pgl(Tc) = Pconf(Tc), (62)

which yields Tc � 260MeV, as shown in fig. 6. This agrees
with lattice data from [28–31] and [37].

An important measure of the interaction is the trace
anomaly, which we compute analytically as I(T ) = ε− 3p
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Fig. 6. The pressure of the SU(3) theory in the confining and
deconfining phases. Filled dots are for the lattice data [37].

Fig. 7. The trace anomaly in the confined phase, filled dots
are for the lattice data [37].

Fig. 8. The trace anomaly in the deconfined phase, filled dots
are for the lattice data [37].

both below Tc in fig. 7 and above Tc in fig. 8. The results
for I(T )

T 4 are compared with the lattice data from [37] and
demonstrate a good agreement.

As a next step we find I<(Tc) from the confinement
phase and I>(Tc) for the deconfined phase and calculate
the difference ΔI(Tc)

T 4 = I>(Tc)
T 4 − I<(Tc)

T 4 , which for Tc =
0.260GeV is equal to ΔI(Tc)

T 4 = 0.61, while Δε(Tc)
T 4 = 0.66.

One can compare this value with the lattice data
from [82], Δ(ε−3P )

T 4
c

= 0.6223 ± 0.056, while in [80] it was

obtained Δ(ε−3P )
T 4

c
= 1.39(4)(5). This latter value is close

to the measured in [28] and [83].

We now turn to the behavior of I(T ) for T > Tc, where
the lattice data [37] discovered an interesting shoulder in
the dependence of I(T )

T 2T 2
c

in the range Tc ≤ T ≤ 4Tc.
It was shown in our previous work [84], that this is of

purely np origin and is provided by 1/T 2 behavior of L(T ).
One can see our analytic results in reasonable agreement
with the lattice data for I(T )

T 4 and I(T )
T 2T 2

c
in figs. 8, 9.

Finally in fig. 10 we show the entropy density s(T )
T 3 ,

which agrees with lattice data from [37].

7 Discussion of results and conclusions

In this paper, as well as in our previous paper [84], we
have used the standard definition of the pressure P (T )
and other thermodynamic characteristics, both below and
above Tc, without including in P (T ) vacuum contribu-
tions ΔεvacV3, as was done in the previous papers [9–20].
This has allowed us to make a direct comparison of our
analytic and numerical results with other approaches and
first of all, with the numerical results of lattice calcula-
tions. The accurate lattice data of [37] for P (T ), I(T )
and s(T ) have been used to compare with our results,
which demonstrates a satisfactory-to-good agreement be-
tween the corresponding data.

We have kept in the present paper the same approach,
as in previous ones, of the explicit definition of two phases
with two different dynamics: the confined phase with CE
and CM confinement and correlators, and the suppressed
Polyakov lines, and the deconfined phase with CM con-
finement and correlators and resurrected Polyakov lines.

We have used confining interaction, derived and
checked numerously to calculate lowest glueball masses in
good agreement with lattice data, to calculate Pconf(T ). In
so doing, we have applied the variable vacuum principle,
allowing to suppress vacuum contribution to the dynamics
(e.g. the string tension σ(T )), if it results in the increasing
of P (T ).

In this way σ(T ) decreases for T � 0.7Tc, making the
glueball masses lighter and enhancing P (T ) in good agree-
ment with numerical lattice data from [37].

The effect of the temperature dependence of the string
tension σ(T ) is well known from numerous lattice mea-
surements, see, e.g., [61–63], which support the principle
mentioned above.

The comparison of our curves for σ(T ) with the lattice
data from [61–63] in fig. 5 shows a qualitative agreement.

However our form of the string tension quenching,
eq. (59) is still the fitting procedure. It agrees qualita-
tively with the lattice data, as shown in fig. 5, but should
be derived analytically, and this work is planned for the
future.

For T > Tc we are using two main dynamical effects,
the Polyakov loops Ladj(T ), which are shown to enter lin-
early in P (T ), and CM confinement yielding CM screening
mass, and reducing the pressure from the upper limit of
the Stefan-Boltzmann law. In so doing we are using the
slightly higher Debye mass, M0 � 2mD � 4

√
σs, however



Eur. Phys. J. A (2017) 53: 138 Page 11 of 13

Fig. 9. The trace anomaly multiplied by (T/Tc)
2 in the confined phase —the left panel, and in the deconfined phase— the

right panel. The filled dots are for the lattice data [37].

Fig. 10. The same as in fig. 9 but for the entropy density.

the results for the proper value of mD do not differ much.
For Polyakov lines Ladj(T ) we are using eqs. (57), (58),
which are close both to the analytic forms obtained ear-
lier in eqs. (54), (55), and to the lattice data from [65].

With these modest input data we have obtained results
for P (T ), I(T ) and s(T ), which are shown in figs. 4-10,
demonstrating a good agreement with the lattice data [37].

The same is true for the value of Tc � 260MeV, found
from fig. 6. Summarizing, one can say, that the confining
and nonconfining dynamics considered here, is supported
by independent numerical data, and can be used to de-
velop further our approach in application to the real QCD
(nf = 2 + 1), as well as to the interesting cases of nf = 2
and arbitrary Nc.

The work of MSL and YuAS was done in the framework of the
scientific program of the Russian Science Foundation, RSF,
project number 16-12-10414.

Appendix A. The V1 cancellation in the
confinement region

As was shown in (6), the instantaneous qq̄ interaction can
be written as

Vqq̄(r) = Vlin(r) + V̄sat(r), (A.1)

where

Vlin(r) = 2r
∫ r

0

dλ

∫ ∞

0

dνDE(λ, ν), (A.2)

and the saturated at large r potential V̄sat(r) is

V̄sat(r) =
∫ r

0

λdλ

∫ ∞

0

dν[DE
1 (λ, ν) − 2DE(λ, ν)]. (A.3)

In what follows we show, that V̄sat(r) is strongly
suppressed in the confining region due to cancella-
tion of DE

1 and DE , while it is equal to V1(r) ≡∫ r

0
λdλ

∫ ∞
0

dνDE
1 (λ, ν) in the deconfined region, and

V1(r) = V
(np)
1 + V pert

1 .
To this end, one can use the gluelump representation

of the correlators DE and DE
1 , given in [48–50,53]

DE
1 (x) =

6αsM1σf

x
e−M1x ≡ A1e

−M1x

x
;

x =
√

λ2 + ν2, (A.4)

with

σf = 0.18GeV2, M1 = 1.4GeV,

DE(x) =
g4(N2

c − 1)
2

0.108σ2
fe−M2x, (A.5)

where M2 = 1.5GeV is the mass of the two-gluon
gluelump with the account of perturbative interaction. As
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a result of integration in (A.3) of the forms (A.4) and (A.5)
one obtains V̄sat(∞) in the confinement phase

V̄sat(∞) =
A1

M2
1

− 4A2

M3
2

= (0.432 − 0.415)GeV ∼= 17MeV,

(A.6)
for αs = 0.4. One can find V̄sat(r) in the range O(10MeV)
for finite r.
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M. Lütgemeier, B. Peterson, Phys. Rev. Lett. 75, 4169
(1995) arXiv:hep-lat/9506025.

32. B. Beinlich, F. Karsch, E. Laermann, A. Peikert, Eur.
Phys. J. C 6, 133 (1999) arXiv:hep-lat/9707023.

33. E. Braaten, R.D. Pisarski, Phys. Rev. Lett. 64, 1338
(1990).

34. J.O. Andersen, E. Braaten, M. Strickland, Phys. Rev. Lett.
83, 2139 (1999) arXiv:hep-ph/9902327.

35. J.O. Andersen, M. Strickland, N. Su, Phys. Rev. Lett. 104,
122003 (2010) arXiv:0911.0676 [hep-ph].

36. J.O. Andersen, M. Strickland, N. Su, JHEP 08, 113 (2010)
arXiv:1005.1603 [hep-ph].
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