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Nonperturbative effects in the quark–gluon thermodynamics are studied in the framework of vacuum cor-
relator method. It is shown, that for  MeV two correlators: colorelectric  and colormag-
netic , provide the Polyakov line and the colormagnetic confinement in the spatial planes respectively.
As a result, both effects produce the realistic behavior of  and , being in good agreement with numer-
ical lattice data.
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1. INTRODUCTION
The idea of a new phase of the QCD matter above

some critical temperature has appeared soon after the
discovery of QCD, namely in [1–3] were formulated
the first principles of weak interacting quark–gluon
medium, named the quark–gluon plasma (QGP).

The first lattice studies [4–6] have supported this
idea, and it was soon realized that high-energy ion col-
lisions can be used to create QGP, see [7] for a recent
review and references.

The subsequent lattice studies of QGP and thermal
transitions has discovered a variety of sudden and
complicated features of the QGP behavior, especially
near the transition temperature  [8]. At present, the
high accuracy lattice data are obtained for 
QCD in the wide temperature region [9–11].

An important progress was made at large  in the
framework of the perturbation theory (Hard Thermal
Loop (HTL) theory) [12], where terms up to 
have been taken into account.

However, in the region  MeV
the nonperturbative (np) effects are most important,
which can be taken into account in the framework of
the Vacuum Correlator Method (VCM), to be used
below.

This method was suggested at the end of the 1980s
in [13, 14], stating, that the basic origin of the nonper-
turbative dynamics in QCD at zero or nonzero  is
connected with the vacuum gluonic fields, appearing
in the form of gluon vacuum correlators. In FCM, the

confinement follows from nonzero quadratic correla-
tor  of colorelectric (CE) fields ,
which produce scalar linear confining interaction

, while correlators  of colormag-
netic (CM) fields , are responsible for confine-
ment in spatial surfaces:

(1)

The confining correlators  generate the non-
zero values of CE and CM string tensions,

(2)

The CE correlators  and  produce the scalar
confining interaction  and the vector-like non-
perturbative interaction  respectively.

(3)
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(4)

At the beginning of nineties a new theory of tempera-
ture transition in QCD was suggested in [15, 16],
where at the critical temperature  the correlator ,
and hence CE confinement disappears, while the CM
vacuum fields survive.

The advanced form of the np theory of the thermal-
ized QCD was given in [17], where the Polyakov lines
have been derived from the vector CE potential

, produced by the CE field correlator
.

Recently the approach of FCM for QCD at 
was reconsidered with the aim to take into account the
most important np contributions: vector CE interac-
tion  at all  and CM confinement at .

It was shown in [18] that the latter phenomenon
resolves the old Linde problem, since it produces the
effective CM Debye mass and eliminates IR diver-
gence of perturbative theory, however justifying the
necessity of summing up the infinite series of diagrams
in the order .

In [19, 20], the CM confinement was taken into
account together with exact treatment of Polyakov
lines in the SU(3) theory. The resulting pressure 
and trace anomaly  are in good agreement with
lattice data [11].

It is a purpose of the present paper to apply the
same method, as in [19, 20], to the analysis of the
QCD matter with  at 

, taking into account accurate values of
Polyakov lines and the CM confinement.

Below we explain the general formalism in Sec-
tion 2. In Section 3, the notation of the CM confine-
ment and its dynamics is treated and the resulting for
formulas for ,  are obtained. In Section 4, the
main dynamical input is defined with respect to

 and Polyakov lines . In Section 5, the
numerical results are shown and discussed.

2. GENERAL FORMALISM
In this section, we are using thermodynamics of

quarks and gluons in the vacuum background fields
(VBF), as formulated in [15]. For the gluon contribu-
tion, one obtains

(5)
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Here,  refers to the VBF,  

is a regularizing factor at , and

(6)

Here,  are the ordering operators, and  is the
field strength of the field , also  is obtained
from (6) with . The winding path measure is

(7)

As one can see in (5), there enters the adjoint gluon
loop , which will be a major point of our
investigation.

Using the relation , one can
rewrite (5) as

(8)

Here,  is the adjoint Wilson loop with the contour
, and  is the normalized adjoint trace.
Note, that we have disregarded so far all perturba-

tive contributions except those possible inside the
gluon loop.

We now turn to the quark contribution, which
according to [17], can be written in a form, similar to (8)
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interaction , which can be written, according to
[21] as

(11)

Separating, as in [19, 20] the constant term
, one obtains in (8), (10) a factorization of the

space 3d, where  is acting, and the temporal direc-
tion, which yields [15, 19, 20]:

(12)

Here,  are 3d closed loop Green’s func-
tions

(13)

As was shown in [21],  enters in , which contrib-
utes to PL

(14)

One can see in (14), that for  GeV,

(the gluelump mass) and , ,

and, hence,  .

Here,  is the range of , as was discussed in
[22].

Inserting over  in (12), one obtains

 and one has the following

form for gluon pressure [19]:
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In a similar way, from (9)–(13) one obtains the quark
pressure for one quark f lavor with the mass :

(16)

In the next section, we analyze the 3d loop CM con-
tributions in , .

3. COLORMAGNETIC CONFINEMENT 
CONTRIBUTION TO , 

As one can see in (13),  and  contain the
contribution of the adjoint and fundamental loops
respectively, which are subject to the area law,

,  fund, adj. Kinetic
term is in  in (13), so both  and  are pro-
portional to the Green’s functions of two color
charges, connected by confining string, from one
point  on the loop to another (arbitrary) point, e.g.,
the point  on the same loop.

There are two ways, how the CM confinement can
be taken into account, suggested in [19]. Considering
the oscillator interaction between the charges, one
obtains

(17)

and  is obtained from (17), replacing  by
. Here, , where  is the

Debye mass, calculated in [23] in good agreement with
lattice data [24].

A more realistic form obtains, when one replaces

the linear interaction , varying the

parameter  in the final expressions, imitating in this
way linear interaction by an oscillator potential. Fol-
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containing the effects of CM confinement, which will
be used in what follows.

4.  AND THE POLYAKOV LINES

In this section, we analyze Polyakov lines (PL)
 and the  interaction , which

generates those as functions of temperature. It is fun-
damentally important, that  has a finite non-
zero limit at large , as is seen in (11), and it is exactly
this value that enters in  at not large ,

(20)

On the lattice  can be measured in two ways,
from the correlator of two  at the distance , which
yields the singlet free energy  [25], which is
equivalent to , and includes also the perturba-
tive contributions.

On the other hand,  can be found together
with  from the direct measurement of the funda-
mental line

(21)

The resulting values of the renormalized  are strongly
dependent on the type of lattice quark operator used.

In what follows we shall take our  using our 
from [21], which are in agreement with data from [26].
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More explicitly, we are writing for  as in [17]
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We shall be using these values of  and the corre-
sponding values of , Eq. (20), in our Eqs. (15),
(16), where  and  are given in (18) to obtain

 and compare to Lattice data.

5. RESULTS AND DISCUSSION

In this section, we present our results for  and
 in the temperature region 

1000 MeV. For , we are

using Eqs. (15), (16) with  from (18) and
,  from (19). The Polyakov lines are obtained

from (20), (22). We are using , and 100 MeV
for , and , respectively.

We compare in Fig. 1 our results for  with the
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One can see in both Figs. 1 and 2 a good agreement

of our results with lattice data. Comparing this with
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was absent, one can deduce, that the CM contribution
is very important in the whole interval of  up to
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1 GeV. The same is true also for the pure  the-
ory, studied in [19, 20]. Moreover, in [18] it was
shown, that CM confinement solves the old Linde
problems, preventing the accurate perturbative calcu-
lations in the region  MeV.

Our results show that the FC method can be suc-
cessfully applied to the quark–gluon thermodynamics
and, in particular, it is planned to extend our analysis
to the case of nonzero chemical potential.

We specifically excluded from our analysis the
region  MeV, where the correlator 
is acting, since the interesting mechanisms of decon-
finement and mutual replacements of  and  in
this region, discussed in [20], require more space and
planned for the future.

We are grateful to B.O. Kerbikov and M.A. Andre-
ichikov for useful discussions. This work was sup-
ported by the Russian Science Foundation (project
no. 16-12-10414).
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