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Double-beta processes play a key role in the exploration of neutrino and weak interaction properties,
and in the searches for effects beyond the standard model. During the last half century many attempts
were undertaken to search for double-beta decay with emission of two electrons, especially for its
neutrinoless mode 0ν2β−, the latter having still not been observed. Double-electron capture (2EC)
was not yet in focus because of its in general lower transition probability. However, the rate of
neutrinoless double-electron capture 0ν2EC can experience a resonance enhancement by many orders
of magnitude when the initial and final states are energetically degenerate. In the resonant case, the
sensitivity of the 0ν2EC process can approach the sensitivity of the 0ν2β− decay in the search for the
Majorana mass of neutrinos, right-handed currents, and other new physics. An overview of the main
experimental and theoretical results obtained during the last decade in this field is presented. The
experimental part outlines search results of 2EC processes and measurements of the decay energies
for possible resonant 0ν2EC transitions. An unprecedented precision in the determination of decay
energies with Penning traps has allowed one to refine the values of the degeneracy parameter for all
previously known near-resonant decays and has reduced the rather large uncertainties in the estimate
of the 0ν2EC half-lives. The theoretical part contains an updated analysis of the electron shell effects
and an overview of the nuclear-structure models, in which the nuclear matrix elements of the 0ν2EC
decays are calculated. One can conclude that the decay probability of 0ν2EC can experience a
significant enhancement in several nuclides.
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I. INTRODUCTION

In 1937, Ettore Majorana found an evolution equation for a
truly neutral spin-1=2 fermion (Majorana, 1937). His work
was motivated by the experimental observation of a free
neutron by James Chadwick in 1932. Majorana also conjec-
tured that his equation applies to a hypothetical neutrino
introduced by Wofgang Pauli to explain the continuous
spectrum of electrons in the β decay of nuclei. In the mid-
1950s, Reines and Cowan (1956, 1959) discovered a particle
with neutrino properties. At the time of the establishment of
the standard model (SM) of electroweak interactions, three
families of neutrinos were known. While the neutron is a
composite fermion consisting of quarks, neutrinos acquired
the status of elementary particles with zero masses in the
SM framework. The discovery of neutrino oscillations
by the Super-Kamiokande Collaboration (Fukuda et al.,
1998) showed that neutrinos are mixed and massive. A
comprehensive description of the current state of neutrino
physics was given by Bilenky (2018).
Whether neutrinos are truly neutral fermions is one

of the fundamental questions in modern particle physics,

astrophysics, and cosmology. The fermions described by the
Dirac equation can also be electrically neutral. However, even
in this case there is a conserved current in Diracs theory, which
ensures a constant number of particles (minus antiparticles).
Majorana fermions, like photons, do not have such a con-
served current. In Dirac’s theory, particles and antiparticles are
independent, while Majorana fermions are their own anti-
particles and, via CPT, it follows that they must have zero
charge. Truly neutral spin-1=2 fermions are referred to as
Majorana fermions, and those with a conserved current are
referred to as Dirac fermions. Majorana fermions in bispinor
basis are vectors of the real vector space R4. They can also be
described by two-component Weyl spinors in the complex
space C2. In both representations, the superposition principle
for Majorana fermions holds over the field of real numbers.
Majorana fermions belong to the fundamental real represen-
tation of the Poincaré group. A Dirac fermion of mass m can
be represented as a superposition of two Majorana fermions of
masses m and −m, respectively.
The neutron has a nonvanishing magnetic moment, so it

cannot be a pure Majorana particle. On the other hand, there
is no fundamental reason to claim that it is a pure Dirac
particle. In theories with nonconservation of the baryon
number, themass eigenstates include amixture of baryons and
antibaryons. At the phenomenological level, the effect is
modeled by adding a Majoranian mass term to the
effective Lagrangian. As a result, the neutron experiences
oscillations n ↔ n̄ whereby the nuclei decay with noncon-
servation of the baryon number (Dover, Gal, and Richard,
1983, 1985; Krivoruchenko, 1996a, 1996b; Gal, 2000;
Kopeliovich and Potashnikova, 2010; Phillips et al., 2016).
Experimental limits for the period of the n ↔ n̄ oscillations
in the vacuum τvac > 2.7 × 108 s (Abe et al., 2015) constrain
the neutron Majorana mass to Δm ∼ 1=τvac < 0.8 × 10−33 m,
where m ¼ 939.57 MeV=c2 is the neutron Dirac mass. Thus,
under the condition of nonconservation of the baryon number,
Majorana’s idea on the existence of truly neutral fermions can
be partially realized in relation to the neutron. In contrast,
neutrinos can be pure Majorana fermions or pure Dirac
fermions or a mixture of these two extreme cases. It is
noteworthy that none of the variants of neutrino masses are
possiblewithin the SM. The neutrinomass problem leads us to
physics beyond the SM. Alternative examples of Majorana
particles include weakly interacting dark-matter candidates
and Majorana zero modes in solid state systems (Elliott and
Franz, 2015).
Searches for neutrinoless double-beta (0ν2β−) decay, neu-

trinoless double-electron capture (0ν2EC) by nuclei, and other
lepton number violating (LNV) processes provide the pos-
sibility to shed light on the question of the nature of neutrinos
whether they are Majorana or Dirac particles. By virtue of the
black-box theorem (Schechter and Valle, 1982; Hirsch,
Kovalenko, and Schmidt, 2006), observation of the 0ν2β
decay would prove that neutrinos have a finite Majorana mass.
The massive Majorana neutrinos lead to a violation of the
conservation of the total lepton number L. In the quark sector
of the SM, the baryon charge B is a similar quantum number.
Vector currents of B and L are classically conserved. Left-
handed fermions are coupled to the SUð2Þ electroweak gauge
fields W� and Z0 so that vector currents of B and L,
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as ’t Hooft (1976) first pointed out, are sensitive to the axial
anomaly. Through electroweak instantons, this leads to non-
conservation of B and L, while the difference B − L is
conserved. The violating amplitude is exponentially sup-
pressed. Another example is given by sphaleron solutions
of classical field equations of the SM that preserve Bþ L but
violate B and L individually, which can be relevant for
cosmological implications (White, 2016). The conservation
of B − L within the SM is not supported by any fundamental
principles analogous to local gauge symmetry, so B and L can
be broken beyond the SM explicitly. Experimental observa-
tion of the proton decay or n ↔ n̄ oscillations could prove
nonconservation of B, while observation of the 0ν2β− decay
or the neutrinoless double-electron capture (0ν2EC) could
prove nonconservation of Lwith constant B. Moreover, these
processes are of interest for determining the absolute
neutrino mass scale, the type of neutrino mass hierarchy,
and the character of CP violation in the lepton sector.
Because of the exceptional value of LNV processes, a vast
literature is devoted to physics of 0ν2β− decay and the
underlined nuclear-structure models; see Bilenky and Petcov
(1987), Suhonen (2007), Avignone, Elliott, and Engel
(2008), Vergados, Ejiri, and Šimkovic (2012), Raduta
(2015), Engel and Menxéndez (2017), and Ejiri, Suhonen,
and Zuber (2019).
The 0ν2β− decay was first discussed by Furry (1939).

The process is shown in Fig. 1. A nucleus with the mass
number A and charge Z experiences 0ν2β− decay accom-
panied by the exchange of a Majorana neutrino between the
nucleons

ðA; ZÞ → ðA; Z þ 2Þþþ þ e− þ e−; ð1:1Þ

where ðA; Z þ 2Þþþ is the doubly ionized atom in the final
state. There are many models beyond the SM that provide
alternative mechanisms of the 0ν2β− decay, some of which are
discussed in Sec. II.
In 1955, the related 0ν2EC process

e−b þ e−b þ ðA; ZÞ → ðA; Z − 2Þ�� ð1:2Þ

was discussed by Winter (1955a). Here e−b are bound
electrons. The nucleus and the electron shell of the neutral
atom ðA; Z − 2Þ�� are in excited states. An example of the

mechanism related to the Majorana neutrino exchange is
shown in Fig. 2. Subsequent deexcitation of the nucleus
occurs via gamma-ray radiation or β decays. Deexcitation of
the electron shell is associated with the emission of Auger
electrons or gamma rays in a cascade formed by the filling of
electron vacancies. Absent special selection rules, dipole
radiation dominates in x rays. Since the dipole moment
of electrons is much higher than that of nucleons in the
nucleus, the deexcitation of the electron shell goes faster. For
atoms with a low value of Z, the Auger-electron emission is
more likely. With an increase in the atomic number, the
radiation of x-ray photons becomes dominant. The deexcita-
tion of high electron orbits is due to Auger-electron emission
for all Z.
Estimates show that the sensitivity of the 0ν2EC process to

the Majorana neutrino mass is many orders of magnitude
lower than that of the 0ν2β− decay. Winter pointed out that
degeneracy of the energies of the parent atom ðA; ZÞ and the
daughter atom ðA; Z − 2Þ�� gives rise to resonant enhance-
ment of the decay. In the early 1980s, Georgi, Glashow, and
Nussinov (1981) and Voloshin, Mitsel’makher, and
Éramzhyan (1982) also remarked on the possible resonant
enhancement of the 0ν2EC process. The resonances in 2EC
were considered, however, an unlikely coincidence.
To compensate for the low probability of the 0ν2EC process

by a resonance effect, it is necessary to determine the energy
difference of atoms with high accuracy. The decay probability
is proportional to the Breit-Wigner factor Γf=ðΔ2 þ Γ2

f=4Þ,
where Γf is the electromagnetic decay width of the daughter
atom and Δ ¼ MA;Z −M��

A;Z−2 is the degeneracy parameter
equal to the mass difference of the parent and the daughter
atoms. The maximum increase in probability is achieved
for Δ ¼ 0 when the decay amplitude approaches the unitary
limit. Taking Δ ∼ 10 keV for the typical splitting of the
masses of the atoms and Γf ∼ 10 eV for the typical decay
width of the excited electron shell of the daughter atom, one
finds a maximum enhancement of ∼106. The degeneracy
parameter Δ≲ Γf gives the half-life of a nuclide with respect
to 0ν2EC comparable to the half-life of nuclides with respect
to 0ν2β− decay.
The near-resonant 0ν2EC process was analyzed in detail by

Bernabeu, De Rujula, and Jarlskog (1983). They developed a
nonrelativistic formalism of the resonant 0ν2EC in atoms and
specified a dozen of nuclide pairs for which degeneracy is not
excluded. The 0ν2EC process became the subject of a detailed
theoretical study by Sujkowski and Wycech (2004). A list of
the near-resonant 0ν2EC nuclide pairs was also provided by

FIG. 1. Schematic representation of neutrinoless double-beta
decay. Two neutrons in the nucleus experience β decay accom-
panied by the exchange of a Majorana neutrino. Neutrons,
protons, electrons, and neutrinos are represented by solid lines.
Arrows show the flow of baryon charge of protons and neutrons
and the flow of lepton charge of electrons and neutrinos. The
cross denotes the Majorana neutrino mass termmL that causes the
helicity flip of the intermediate neutrino and violates the lepton
number by two units.

FIG. 2. Schematic representation of neutrinoless double-
electron capture. Two protons in the nucleus each capture a
bound electron from the electron shell and turn into two neutrons
by the exchange of a Majorana neutrino. Notation is the same as
in Fig. 1.
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Karpeshin (2008). The problem acquired an experimental
character: the difference between masses of the parent and
daughter atoms, i.e., Q values, known to an accuracy of about
10 keV, which is too far from the accuracy required to identify
the unitary limit. The determination of the degeneracy
parameter has acquired fundamental importance.
In the 1980s, there was no well-developed technique to

measure the masses of nuclides with relative uncertainty of
about 10−9 sufficient to find resonantly enhanced 0ν2EC
processes. The current state-of-the-art technique high-
precision Penning-trap mass spectrometry was still in its
infancy. Its triumphal advance in the field of high-precision
mass measurements on radioactive nuclides began with the
installation of the ISOLTRAP facility at CERN in the late
1980s (Bollen et al., 1987; Mukherjee et al., 2008; Kluge,
2013). Recent decades have been marked by a rising variety of
high-precision Penning-trap facilities in Europe, the USA, and
Canada (Blaum, 2006; Blaum, Dilling, and Nörtershäuser,
2013). This led to a tremendous development of Penning-trap
mass-measurement techniques (Eliseev et al., 2007, 2013,
2014; George, Blaum et al., 2007; Kretzschmar, 2007, 2013;
Blaum, Dilling, and Nörtershäuser, 2013) and made it possible
to routinely carry out mass measurements on a broad variety
of nuclides with a relative uncertainty of about 10−9. The mass
of the ion is determined via the measurement of its free
cyclotron frequency in a pure magnetic field, the most
precisely measurable quantity in physics.
These factors motivated a new study of the near-resonant

0ν2EC process. A relativistic formalism for calculating
electron shell effects was developed and an updated realistic
list of nuclide pairs for which the measurement of Q2EC
values has high priority was compiled (Krivoruchenko et al.,
2011). A significantly refreshed database of the nuclides
and their excited states is now available, 30 years after
the previous publication by Bernabeu, De Rujula, and
Jarlskog (1983). An overview of the investigation of the
resonant 0ν2EC was given by Eliseev, Novikov, and Blaum
(2012) including persistent experimental attempts to
search for appropriate candidates for this extraordinary
phenomenon.
The advancements of the experiments in search of the 0ν2EC

process are more modest than those searching for 0ν2β− decay.
While the sensitivity of the 0ν2β− experiments approaches
half-life limits T1=2∼1024–1026 yr, which constrains the effec-
tive Majorana neutrino mass of electron neutrino to
jmββj≲ 0.1–0.7 eV, the results of the best 0ν2EC experiments
are still approximately T1=2 ∼ 1019–1022 yr. The reasons for
this difference are rather obvious: there is usually a much
lower relative abundance of the isotopes of interest (typically
lower than 1%), and additionally a more complicated effect
signature due to the emission of a gamma-quanta cascade
(instead of a clear 0ν2β− peak at the decay energy). The
second circumstance results in a lower detection efficiency for
the most energetic peak in a 0ν2EC energy spectrum.
Furthermore, the energy of the most energetic 0ν2EC peak
is generally lower than in the 0ν2β− processes, yet the higher
the energy of a certain process the better the suppression
of the radioactive background. As a result the scale of the
2EC experiments is substantially smaller than that of the

0ν2β− ones. At the same time, there is a motivation to search
for the neutrinoless ECβþ and 2βþ decays owing to the
potential to clarify the possible contribution of the right-
handed currents to the 0ν2β− decay rate (Hirsch et al., 1994)
and the appealing possibility of the resonant 0ν2EC proc-
esses. The complicated effect signature expected in resonant
0ν2EC transitions becomes an advantage: the detection of
several gamma quanta with well-known energies could be a
strong proof of the pursued effect.
The previously mentioned aspects of the phase space,

degeneracy, abundance factors, etc., play an important role
in determining the half-lives of the 0νECβþ and 0ν2EC
processes. A further ingredient affecting the decay half-lives
are the involved nuclear matrix elements (NMEs); see
Suhonen (2012a), Maalampi and Suhonen (2013), and
Ejiri, Suhonen, and Zuber (2019). These NMEs have been
calculated in various nuclear-theory frameworks for a
number of nuclei. In this review we use these NMEs, as
well as NMEs that have been calculated just for this review,
to estimate the half-lives of those 0ν2EC transitions that are
of interest due to their possibly favorable resonance
conditions.

II. DOUBLE-ELECTRON CAPTURE AND PHYSICS
BEYOND THE STANDARD MODEL

The underlying quark-level physics behind the 0ν2EC
process [see Eq. (1.2)] is basically the same as for the
0ν2β−, 0ν2βþ, and 0νECβþ decays. In Figs. 1 and 2, we
show the mechanism of exchange of light or heavy neutrinos
with Majorana mass. The latter arise beyond the SM
within the Weinberg dimension-5 effective LNV operator
(Weinberg, 1979) providing conditions for the existence
of the processes 0ν2EC and 0ν2β−. A violation of the
lepton number can also occur from quark-lepton effective
Lagrangians of higher dimensions, corresponding to other
possible mechanisms of the 0ν2EC process. The neutrinoless
2EC can be accompanied by the emission of one or more
extremely light particles other than neutrinos in 2ν2EC. A
well-known example is the Majoron J as the Goldstone
boson of a spontaneously broken Uð1ÞL symmetry of the
lepton number. Passing to the hadronic level one meets two
possibilities of hadronization of the quark-level underlying
process known from 0ν2β− decay: direct nucleon and pionic
mechanisms. Next, we will take a closer look at the
previously mentioned aspects of the 0ν2EC process.
First, the underlying quark-level mechanisms of the neu-

trinoless 2EC can be classified according to the following
possible exotic final states:

• No exotic particles in the final state. The reaction 0ν2EC
is shown in Eq. (1.2).

• The reaction 0ν2ECnJ: e−bþe−b þðA;ZÞ→ðA;Z−2Þ��þ
nJ, with n being the number of Majorons or Majoron-
like exotic particles in the final state.

Both kinds of reactions can be further classified by the
typical distance between particles involved in the under-
lying quark-lepton process, depending on the masses of
the intermediate particles (Päs et al., 1999, 2001;
Prezeau, Ramsey-Musolf, and Vogel, 2003; Cirigliano
et al., 2017a, 2018a), as illustrated in Fig. 3.
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• Long-range mechanisms with the Weinberg d ¼ 5 oper-
ator providing Majorana mass to the intermediate neu-
trino in Fig. 3(a) and an effective d ¼ 6 operator in the
upper vertex of Fig. 3(b).

• Short-range mechanisms with a dimension-9 effective
operator in the vertex of Fig. 3(c).

The effective operators in the low-energy limit origi-
nate from diagrams with heavy exotic particles in the
internal lines.

The diagrams of the 0ν2ECnJ decays are derived
from those in Fig. 3 by inserting one or more scalar
Majoron lines either into the blobs of effective operators
or into the central neutrino line of Fig. 3(a).

A. Quark-level mechanisms of 0ν2EC

We now consider in more detail the short- and long-range
mechanisms of 0ν2EC. The corresponding diagrams for the
0ν2EC process are shown in Fig. 3. The blobs in Figs. 3(b)
and 3(c) represent the ΔL ¼ 2 effective vertices beyond the
SM. At the low-energy scales μ ∼ 100 MeV typical for the
0ν2EC process, the blobs are essentially pointlike,having been
generated by the exchange of a heavy particle with the
characteristic masses MH much larger than the 0ν2EC scale,
i.e., MH ≫ μ. Integrating them out one finds the effective
Lagrangian terms describing the vertices at the scale μ ≪
Λ ∼MH for any kind of underlying high-scale physics beyond
the SM. These vertices can be written in the following form
(Päs et al., 1999, 2001):

Lð6Þ
ql ¼ GFffiffiffi

2
p
�
−jμCCJCCμ þ

X
i

CX
i ðμÞOð6ÞX

i ðμÞ
�
; ð2:1Þ

Lð9Þ
ql ¼ G2

F

2mp

X
i;XY

CXY
i ðμÞOð9ÞXY

i ðμÞ: ð2:2Þ

The first and second lines correspond to Figs. 3(b) and 3(c),
respectively. The proton mass mp is introduced to match the
conventional notations. The complete set of the ΔL ¼ 2

operators for d ¼ 6 and 9 is as follows (Arbeláez et al.,
2016, 2017; González, Hirsch, and Kovalenko, 2016):

Oð6ÞX
1 ¼ 4ðd̄PXuÞðνcPLeÞ; ð2:3Þ

Oð6ÞX
2 ¼ 4ðd̄σμνPXuÞðνcσμνPLeÞ; ð2:4Þ

Oð6ÞX
3 ¼ 4ðd̄γμPXuÞðνcγμPReÞ; ð2:5Þ

Oð9ÞXY
1 ¼ 4ðd̄PXuÞðd̄PYuÞj; ð2:6Þ

Oð9ÞXY
2 ¼ 4ðd̄σμνPXuÞðd̄σμνPXuÞj; ð2:7Þ

Oð9ÞXY
3 ¼ 4ðd̄γμPXuÞðd̄γμPYuÞj; ð2:8Þ

Oð9ÞXY
4 ¼ 4ðd̄γμPXuÞðūσμνPYdÞjν; ð2:9Þ

Oð9ÞXY
5 ¼ 4ðd̄γμPXuÞðd̄PYuÞjμ; ð2:10Þ

where X; Y ¼ L; R and the leptonic currents are
j ¼ ecð1� γ5Þe, jμ ¼ ecγμγ5e. The first term in Eq. (2.1)
describes the SM low-energy four-fermion effective interac-
tion of the charged current (CC):

jμCC ¼ ν̄γμð1 − γ5Þe; JCCμ ¼ d̄γμð1 − γ5Þu: ð2:11Þ

The SUð3Þc × Uð1Þem symmetric operators in Eqs. (2.3)–
(2.10) are written in the mass-eigenstate basis. They originate
from the SUð3Þc × SUð2ÞW × Uð1ÞY gauge invariant opera-
tors after the electroweak symmetry breaking; see Bonnet
et al. (2013), Lehman (2014), and Graesser (2017).
Figures 3(a) and 3(b) are of second order in the

Lagrangian (2.1). The effect of ΔL ¼ 2 is introduced in
Figs. 3(a) and 3(b) by the Majorana neutrino mass term
and by the d ¼ 6 effective operators (2.3)–(2.5), respectively.
Figure 3(a) is the conventional Majorana neutrino mass
mechanism with the contribution to the 0ν2EC amplitude

Vαβ ∼mββ ≡
X
i

U2
eimνi ; ð2:12Þ

where U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
mixing matrix and mββ is the effective electron neutrino
Majorana mass parameter that is well known from the analysis
of 0ν2β− decay. The contribution of Fig. 3(b) is independent
of the neutrino mass but proportional to the momentum q
flowing in the neutrino propagator. This is the so-called q̂-type
contribution. The following comment is in order. Figures 3(a)
and 3(b) show two possible mechanisms of both 0ν2EC and
0ν2β− (with the inverted final to initial states) processes. The
first mechanism in Fig. 3(a) contributes to the amplitude of
these processes with terms proportional to the effective
Majorana mass parameter mββ defined in Eq. (2.12). The
contribution of the second mechanism in Fig. 3(b) has no
explicit dependence on mββ. This is because the upper vertex
in Fig. 3(b) breaks the lepton number into two units, as
necessary for this process to proceed without need of the
ΔL ¼ 2 Majorana neutrino mass insertion into the neutrino
line. Note that mββ ¼ 0 is compatible with the neutrino
oscillation data in the case of normal neutrino mass ordering.
This result shows that the mechanism in Fig. 3(a), propor-
tional to mββ, can be negligible in comparison to the
mechanism in Fig. 3(b). Therefore, even if mββ turns out to
be small, both the 0ν2β− decay and the 0ν2EC process can be
observable due to the latter mechanism. This possibility has
been studied in the literature for 0ν2β− decay; see Päs et al.

(a) (b) (c)

FIG. 3. A decomposition of the generic ΔL ¼ 2 vertex into (a),
(b) the long-range and (c) short-range quark-level contributions to
0ν2EC. (a) The conventional Majorana neutrino mass mecha-
nism. The blobs in (b) and (c) denote the effective ΔL ¼ 2
vertices.
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(1999, 2001), Arbeláez et al. (2016, 2017), and González,
Hirsch, and Kovalenko (2016).
The SM gauge invariant Weinberg dimension-5 effective

operator generating the neutrino mass mechanism is given by
(Weinberg, 1979)

Lð5Þ
W ¼ κ

ðLcHÞðLHÞ
Λ

¼ κ

Λ
νcνH0H0 þ � � �

⟶
SSB

κ
hH0i2
Λ

νcνþ � � � : ð2:13Þ

In Eq. (2.13) we mean LH ¼ LiHjϵij, the singlet combination
of two SUð2ÞW doublets LðLcÞ and H. After the electroweak
spontaneous symmetry breaking (SSB) with the Higgs vac-
uum expectation value hHi ≠ 0 neutrinos acquire a Majorana
mass mν ¼ −2κhHi2=Λ, with κ a dimensionless parameter. In
the flavor basis of neutrino states the contribution of the
Weinberg operator to a LNV process such as 0ν2EC is
displayed in Fig. 4. The summation of multiple insertions
of the Weinberg operator into the bare neutrino propagator
entails the renormalized neutrino propagator with Majorana
mass mν. The operator (2.13) is unique. Other operators of
the effective Lagrangian are suppressed by higher powers of
the unification scale Λ. The study of the neutrinoless 2EC
process and 2β− decays could be the most direct way of
testing physics beyond the standard model. In terms of the
naive dimensional counting one can expect the dominance
of the Weinberg operator, with the dimension 5, over the
operators of dimensions 6 and 9 in Eqs. (2.5) and (2.6).
However, to set mν at eV scale one should provide a small
coupling κ ∼ 10−11 for the phenomenologically interesting
case of Λ ∼Oð1 TeVÞ. However, the smallness of any
dimensionless coupling requires explanation. Typically in
this case one expects the presence of some underlying
physics, for example, symmetry. The situation changes with
the increase of the LNV scale up to Λ ∼ 1013–14, with κ ∼ 1,
where the contribution of the Weinberg operator to 0ν2EC
dominates. The final count depends on the concrete high-
scale underlying LNV model: not all operators appear in the
low-energy limit and κ is a small suppression factor allowing
TeV-scale Λ. The latter can stem from loops or the ratio of the
SSB scales in multiscale models; for a recent analysis see
Helo, Hirsch, and Ota (2016).
In this review the mechanism of the neutrino Majorana

masses is discussed in detail, for which numerical evaluation
of the neutrinoless 2EC half-lives of near-resonant nuclides
with the known NMEs will be given. In the case of high-
dimensional operators, as well as for the d ¼ 5 mechanism
with the unknown NMEs, normalized estimates are given that
take into account the factorization of nuclear effects in the
0ν2EC amplitude. Keeping the previous comments in mind,
we also discuss mechanisms based on the operators of

Eqs. (2.5) and (2.6), leading to the contributions shown in
Figs. 3(b) and 3(c).
The blobs in Figs. 3(b) and 3(c) can be opened up

(ultraviolet completed) in terms of all possible types of
renormalizable interactions consistent with the SM
gauge invariance. These are the high-scale models, which
lead to the 0ν2EC process. A list of all the possible
ultraviolet completions for 0ν2β− decay was given by
Bonnet et al. (2013).
The Wilson coefficients Ci in Eqs. (2.1) and (2.2) are

calculable in terms of the parameters (couplings and masses)
of a particular underlying model at the scale Λ ∼MH, called
the “matching scale.” Note that some of CiðΛÞ may vanish.
To make contact with 0ν2EC one needs to estimate Ci at a
scale μ0 close to the typical 0ν2EC-energy scale. The
coefficients Ci run from the scale Λ down to μ0 due to
the QCD corrections. In addition, the d ¼ 9 operators
undergo the renormalization group equation mixing with
each other, leading to the mixing of the corresponding
Wilson coefficients.
The general parametrization of the 0ν2EC amplitude derived

fromFig. 3, taking into account the leading-order QCD running
(González, Hirsch, and Kovalenko, 2016; Cirigliano et al.,
2018a; Ayala, Cvetic, and Gonzalez, 2020; Liao, Ma, and
Wang, 2020), reads

Vαβ ¼ G2
Fcos

2θCKZ

�X3
i¼1

βXi ðμ0;ΛÞCX
i ðΛÞ

þ
X5
i¼1

βXYi ðμ0;ΛÞCXY
i ðΛÞ

�
Aαβ: ð2:14Þ

The parameters βXi and βXYi incorporate the QCD running
of the Wilson coefficients and the matrix elements of the
operators in Eqs. (2.3)–(2.5) combined with jμCCJCCμ and
the operators in Eqs. (2.6)–(2.10). The wave functions
of the captured electrons with quantum numbers α and β
enter the coefficients Aαβ defined by Eqs. (2.20)–(2.23). In
Eq. (2.14) the summation over the different chiralities
X; Y ¼ L; R is implied. The Wilson coefficients CiðΛÞ
entering Eqs. (2.1) and (2.2) are linked to the matching
scale Λ, where they are calculable in terms of the
Lagrangian parameters of a particular high-scale under-
lying model. The decay amplitude (2.14) is supplemented
by the overlap amplitude KZ of the electron shells of the
initial and final atoms. In this review, we mainly discuss
the light Majorana neutrino exchange mechanism of
Fig. 3(a). The 0ν2EC NMEs are currently known only for
the Majorana neutrino exchange mechanisms coupled to
left- and right-handed currents. Calculations of the NMEs
corresponding to the other long- and short-range mecha-
nisms of Figs. 3(b) and 3(c), respectively, for all oper-
ators (2.5) and (2.6) are still in progress.

B. Examples of underlying high-scale models

We give three examples of popular high-scale models that
can underlie the 0ν2EC process. In the low-energy limit their

FIG. 4. The contribution of the Weinberg operator to the 0ν2EC
process in the flavor basis of the neutrino states.
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contribution is described by the effective Lagrangians (2.1)
and/or (2.2).
Left-right symmetric models.—Awell-known example of a

high-scale model leading to ΔL ¼ 2 processes, such as 0ν2β
decay and 0ν2EC and the generation of Majorana mass for
neutrinos, is the left-right symmetric extension of the SM. The
left-right symmetric model (LRSM) is based on the gauge
group G spontaneously broken via the chain

G ¼ SUð3ÞC × SUð2ÞL × SUð2ÞR × Uð1ÞB−L
⇓vR

SUð3ÞC × SUð2ÞL × Uð1ÞY
⇓vSM

SUð3ÞC × Uð1Þem; ð2:15Þ

where vR ≡ hΔRi ≫ hΦi≡ vSM are the vacuum expectation
values (VEVs) of a Higgs SUð2ÞR triplet ΔR and a Higgs
bidoublet Φ, respectively. The bidoublet belongs to the
doublet representation of both SUð2ÞL and SUð2ÞR. There is
also a Higgs SUð2ÞL triplet ΔL with the VEV vL ≡ hΔLi.
Left- and right-handed leptons and quarks belong to the
doublet representations of the SUð2ÞL and SUð2ÞR gauge
groups, respectively. The SUð3ÞC × SUð2ÞL × SUð2ÞR ×
Uð1ÞB−L assignments of the LRSM fields are

LLðRÞ ¼
�

νi

l−
i

�
LðRÞ

∼ ½1; 2ð1Þ; 1ð2Þ;−1�;

QLðRÞ ¼
�
ui
di

�
LðRÞ

∼ ½3; 2ð1Þ; 2ð1Þ;−1=3�;

ΔLðRÞ ¼
 Δþffiffi

2
p Δþþ

Δ0 −Δþffiffi
2

p

!
LðRÞ

∼ ½1; 3ð1Þ; 1ð3Þ; 2�;

Φ ¼
� Φ0

1 Φþ
1

Φ−
2 Φ0

2

�
∼ ½1; 2; 2; 0�; ð2:16Þ

where i ¼ 1; 2; 3 is the generation index. Previously introduced
VEVs are related to the VEVs of the electrically neutral
components hΔL;Ri≡ hΔ0

L;Ri, hΦi2 ¼ hΦ0
1i2 þ hΦ0

2i2 ≡ vSM.
There are two charged gauge bosons W�

L;R and two neutral
gauge bosons ZL;R with masses of the order of
MWR

;MZR
∼ gRvR, MWL

;MZL
∼ gLvSM. Note that in the sce-

nariowith themanifest left-right symmetry the SUð2ÞL;R gauge
couplings obey gL ¼ gR. Since the bosons WR, ZR have not
been experimentally observed, the scale of the left-right
symmetry breaking vR must be sufficiently large, above a
few TeV. On the other hand, the VEV of the “left” triplet vL
must be small since it affects the SM relation ρ ¼ 1, which is in
good agreement with the experimental measurements setting
an upper limit vL ≲ 8 GeV. From the scalar potential of the
LRSM follows vL ∼ v2SM=vR, which satisfies the previously
mentioned upper limit for vR ≳ 10 TeV.
The spontaneous gauge symmetry breaking (2.15) gener-

ates a 6 × 6 neutrino seesaw-I mass matrix given in the basis
ðνL; νCRÞT by

Mν ¼
�
mL mD

mT
D mR

�
; ð2:17Þ

with mL;R ∼ yL;RvL;R and mD ∼ yΦvSM 3 × 3 block
matrices in the generation space. The matrix (2.17) is
diagonalized to UTMνU ¼ diagðmνi ;mNi

Þ by an orthogonal
mixing matrix

U ¼
�
UL UD

UT
D UR

�
; ð2:18Þ

withUL;R;D 3 × 3 block matrices in the generation space. The
neutrino mass spectrum consists of three light ν1;2;3 and three
heavy N1;2;3 Majorana neutrino states with the masses mν1;2;3

and mN1;2;3
, respectively.

The possible contributions to 0ν2EC within the LRSM are
shown in Fig. 5.
Figure 5(a) shows the conventional long-range light

Majorana neutrino exchange mechanisms with the con-
tribution shown in Eq. (2.12). Figures 5(b) and 5(e) are
short-range mechanisms with two heavy right-handed
bosons WR and heavy neutrino νR or doubly charged
Higgs Δþþ exchange. In the low-energy limit they reduce

to the effective operators Oð9ÞRR
3 in Eq. (2.8) depicted

in Fig. 3(c). Figures 5(c) and 5(d), containing light
virtual neutrinos, represent the long-range mechanism
of 0ν2EC.
In the low-energy limit the upper parts of Figs. 5(c) and 5(d)

with heavy particles WR and νR reduce to the d ¼ 6 effective

operators Oð6ÞR
3 and Oð6ÞL

3 , respectively. Note that these
contributions to the 0ν2EC amplitude depend not on the light
neutrino mass mν but on its momentum q flowing in the
neutrino propagator. Technically this happens because differ-
ent chiralities of the lepton vertices project the q̂ term out of
the neutrino propagator PLðq̂þmνÞPR ¼ PLq̂. On the con-
trary, Fig. 5(a), with the same chiralities in both vertices, is
proportional to mν due to PLðq̂þmνÞPL ¼ PLmν. This is
consistent with the fact that in the latter case the source
of LNV is the Majorana neutrino mass mν and in the limit
mν → 0 the corresponding contribution must vanish. On the
other hand, in the former case [Figs. 5(c) and 5(d)] the LVN
source is the operator in the upper vertex andmν is not needed

(a)

(c) (d) (e)

(b)

FIG. 5. Possible flavor-basis contributions to 0ν2EC within the
LRSM.
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to allow for the ΔL ¼ 2 process to proceed. These are the
so-called q̂-type contributions.
The Wilson coefficients CK

n in Eqs. (2.2) and (2.14) at
the matching high-energy scale Λ ∼MR corresponding to
Figs. 5(b)–5(e) are given by

Fig:5ðbÞ∼yRhΔRi→CRR;NR
3 ¼

X3
i¼1

U2
Lei

mp

mNi

�
MWL

MWR

�
4

;

ð2:19Þ

Fig:5ðcÞ ∼ yΦyRhΦihΔRi → CR;q̂
3 ¼

X3
i¼1

ULeiUD;ei

�
MWL

MWR

�
2

;

ð2:20Þ

Fig:5ðdÞ ∼ ζWyΦyRhΦihΔRi → CL;q̂
3 ¼

X3
i¼1

ULeiUD;ei tan ζW;

ð2:21Þ

Fig:5ðeÞ∼λΔR
g2RhΔRi→C

RR;Δþþ
R

3 ¼
X3
i¼1

U2
Rei

mNi
mp

m2
ΔR

�
MWL

MWR

�
4

:

ð2:22Þ

Here ζW is the angle of WL-WR mixing. For convenience we
show the correspondence of the flavor-basis diagrams in Fig. 5
to the particular combinations of the parameters of the LRSM
Lagrangian (quartic ΔR coupling λΔR

, gauge coupling gR, and
VEV hΔRi), then give the corresponding Wilson coefficients.
Leptoquark models.—Leptoquarks (LQs) are exotic scalar

or vector particles coupled to lepton-quark pairs in such a way
that L̄ðLQÞQ. They appear in various high-scale contexts, for
example, in grand unification, extended technicolor, compos-
iteness, etc. For a generic LQ theory all the renormalizable
interactions were specified by Buchmüller, Rückl, and Wyler
(1987). Current experimental limits (Tanabashi et al., 2018)
allow them to be relatively light at the TeV scale. The SM
gauge symmetry allows LQs to mix with the SM Higgs. This
mixing generates ΔL ¼ 2 interactions with the chiral structure
leading to the long-range q̂-type contribution not suppressed
by the smallness of the Majorana mass mν of the light virtual
neutrino displayed in Fig. 6(a), with S or V being scalar or
vector LQs. In the low-energy limit, the upper part of Fig. 6(a)
with heavy LQs reduces to the pointlike vertex described by

the operator Oð6ÞX
1 in Eq. (2.3). The chirality structure of this

vertex combined with the SM vertex in the bottom part of
Fig. 6(a) render a q̂-type contribution to 0ν2EC.
R-parity violating supersymmetric models.—The TeV-scale

supersymmetric (SUSY) models offer a natural explanation of
the grand unified theory–SM scale hierarchy, introducing
superpartners to each SM particle, so that they form super-
multiplets (chiral superfields): ðq; q̃Þ, ðl; l̃Þ, ðg; g̃Þ, etc. Here q̃
and l̃ are scalar squarks and sleptons, while g̃ is a spin-1=2
gluino. The SUSY framework requires at least two electro-
weak Higgs doublets HU and HD. A class of SUSY models,
the so-called R-parity violating (RPV) SUSY models, allow
for LNV interactions described by a superpotential

WRPV ¼ λ0ijkLiQjD̄k þ ϵiLiHU; ð2:23Þ

where Q, D, and HU conventionally denote here the chiral
superfields of the left-chiral electroweak doublet quarks, the
right-chiral electroweak singlet down quark, and the up-type
electroweak Higgs doublet, respectively.
The RPV SUSY models with the interactions (2.23) con-

tribute to the long- and short-range mechanisms of the 0ν2EC
process. The corresponding diagrams are shown in Fig. 6.
Figures 6(a) and 6(b) generate the long-range q̂-type con-
tribution, while Fig. 6(c) with the gluino g̃ or neutralino χ
exchange entails the short-range contribution. The source
of the lepton number violation is located in the vertices of
Figs. 6(a) and 6(b), while in Fig. 6(c) it is given by the
Majorana mass of the neutralino mχ and/or gluino mg̃. In the

low-energy limit Figs. 6(a) and 6(b) lead to the operatorOð6ÞL
1 ,

while in this limit Fig. 6(c), where all internal particles are
heavy, collapses to a pointlike short-range contribution given

by a linear combination of d ¼ 9 operatorsOð9ÞLL
1 andOð9ÞLL

2 .

C. Hadronization of quark-level interactions

We now comment on the calculation of the structure
coefficients βXi , β

XY
i in the amplitude (2.14) depending on

the NMEs and nucleon structure. The Lagrangians (2.1)
and (2.2) can, in principle, be applied to any LNV processes
with whatever hadronic states: quarks, mesons, nucleons, and
other baryons, as well as nuclei. The corresponding amplitude,
such as that in Eq. (2.14), involves the hadronic matrix
elements of the operators (2.6) and (2.5). The Wilson
coefficients CXY

i are calculated in terms of the parameters
of the high-scale model and are independent of the low-energy
scale nonperturbative hadronic dynamics. This is the cel-
ebrated property of the operator product expansion, express-
ing interactions of some high-scale renormalizable model in
the form of Eqs. (2.1) and (2.2) below a certain scale μ. In the
case of 0ν2β− decay, 0ν2EC, and other similar nuclear
processes, the corresponding NMEs of the operators (2.6)
and (2.5) are calculated in the framework of the approach
based on a nonrelativistic impulse approximation; for a
detailed description see Doi, Kotani, and Takasugi (1985).
This implies, as the first step, reformulation of the quark-level
theory in terms of the nucleon degrees of freedom, which the
existing nuclear-structure models operates with. This is the so-
called hadronization procedure. In the absence of a firm theory
of hadronization one is left to resort upon general principles
and particular models. Imbedding two initial (final) quarks
into two different protons (neutrons) is conceptually a more

(a) (b) (c)

FIG. 6. Possible flavor-basis contributions to 0ν2EC within
(a),(b) leptoquark and (a),(c) RPV MSSM models. The cross in
(c) denotes the Majorana mass of a gluino g̃ or neutralino χ.
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simple option that is illustrated in Fig. 7(a). This is the
conventional two-nucleon mechanism relying on the nucleon
form factors as a phenomenological representation of the
nucleon structure. On the other hand, putting one initial and
one final quark into a charged pion while the other initial
quark is put into a proton and one final quark into a neutron, as
in Fig. 7(b), we deal with the one-pion mechanism. The two-
pion mechanism, displayed in Fig. 7(c), treats all quarks to be
incorporated in two charged pions. In both cases the pions are
virtual and interact with nucleons via the ordinary pseudo-
scalar pion-nucleon coupling N̄iγ5τπN. One may expect
a priori dominance of the pion mechanism for the reason
that it extends the region of the nucleon-nucleon interaction
due to the smallness of the pion mass leading to a long-range
potential. As a result, the suppression caused by the short-
range nuclear correlation can be significantly alleviated in
comparison to the conventional two-nucleon mechanism.
Nevertheless, one should consider all these mechanisms to
contribute to the process in question with corresponding
relative amplitudes. The latter is as yet unknown. In principle,
it can be evaluated in particular hadronic models. These kinds
of studies are still missing in the literature and consensus on
the dominance of one of the two mechanisms is pending. It is a
common trend to posit an analysis of one of the two
hadronization scenarios. Note that for the long-range contri-
butions described by the effective Lagrangian (2.1) the
previously mentioned advantage of the pion mechanism is
absent and one can, in a sense, safely resort to the conven-
tional two-nucleon mechanism. The light Majorana exchange
contribution to 0ν2EC, on which we focus in the rest of this
review, is of this kind. This limitation is explained by the fact
that for the moment there are no nuclear matrix elements yet
calculated in the literature for mechanisms other than this one.
The procedure of hadronization is essentially the same as

for 0νββ decay and is described in the literature. For more
details on this approach to hadronization see Doi, Kotani, and
Takasugi (1985), Faessler, Kovalenko, and Šimkovic (1998),
Faessler et al. (2008), and Graf et al. (2018).
Recently another approach has been developed, which

resorts to matching the high-scale quark-level theory to chiral
perturbation theory. The latter is believed to provide a low-
energy description of QCD in terms of nucleon and pion
degrees of freedom. It is expected that the parameters of the
low-energy effective theory can be determined from exper-
imental measurements or from the lattice QCD. This approach
leads to a different picture of hadronization and numerical
results compared to the previously sketched conventional
approach. Contrary to the conventional approach short-range

nucleon-nucleon interactions should be introduced for theo-
retical self-consistency even in the case of the long-range light
neutrino exchange mechanism in Fig. 3(a). For a detailed
description of this approach see Prezeau, Ramsey-Musolf, and
Vogel (2003), Cirigliano et al. (2017a, 2017b, 2018a, 2018b,
2019, 2020), and Graesser (2017).
To conclude, neutrinoless double-electron capture 0ν2EC,

like 0νββ decay, is a ΔL ¼ 2 lepton number violating process.
Moreover, on the level of a nucleon subprocess it is virtually
equal to 0νββ decay. Consequently, the underlying ΔL ¼ 2
physics driving both these processes is the same. There are
many formal differences in the form of the effective operators
representing this physics at low-energy sub-GeV scales. We
specified a complete basis of the 0ν2EC effective operators in
Eqs. (2.1)–(2.10) and exemplified high-energy scale models
presently popular in the literature, which can be reduced to
these operators in the low-energy limit. Akin to 0νββ decay
there are basically three types of mechanisms of 0ν2EC shown
in Fig. 3: Fig. 3(a) shows the conventional neutrino exchange
mechanism with the amplitude proportional to the effective
Majorana neutrino mass mββ defined in Eq. (2.12), and
Fig. 3(b) displays a neutrino exchange mechanism indepen-
dent of the Majorana neutrino mass, when the lepton number
violation necessary for 0ν2EC to proceed is gained from a
ΔL ¼ 2 vertex. Figures 3(a) and 3(b) are both long-range
mechanics induced by the exchange of an extremely light
particle, a neutrino. On the other hand, Fig. 3(c) represents a
short-range mechanism induced by the exchange of heavy
particles with masses much larger than the typical scale
(approximately a few MeV) of 0ν2EC. Despite the underlying
physics of both 0ν2EC and 0νββ decay being the same, their
NMEs are significantly different. We discuss the nuclear-
structure aspects and atomic physics involved in the calcu-
lations of the 0ν2EC NMEs in subsequent sections. Here it is
worth noting that thus far only the NMEs for the Majorana
neutrino exchange mechanism in Fig. 3(a) have been calcu-
lated in the literature. Similar calculations for NMEs of other
mechanisms in Figs. 3(b) and 3(c) are still pending.

III. PHENOMENOLOGY OF NEUTRINOLESS 2EC

Figures 1 and 2 can be combined as shown in Fig. 8. In the
initial state, there is an atom ðA; ZÞ. The electron lines belong
to the electron shells, and the proton and neutron lines belong
to the initial and intermediate nuclei, respectively. As a result
of neutrinoless double-electron capture, an atom ðA; Z − 2Þ��
is formed, generally in an excited state. In what follows,
ðA; ZÞ� denotes an atom with the excited electron shell and
ðA; ZÞ�� indicates that the nucleus is also excited. The
intermediate atom can decay by emitting a photon or
Auger electrons, but it can also experience 0ν2β− transition
and evolve back to the initial state. As a result, LNV
oscillations ðA; ZÞ ↔ ðA; Z − 2Þ�� occur in the two-level
system. These oscillations are affected by the coupling of
the ðA; Z − 2Þ�� atom to the continuum, which eventually
leads to the decay of ðA; ZÞ. The Hamiltonian of the system is
not Hermitian because ðA; Z − 2Þ�� has a finite width.
The LNVoscillations of atoms were discussed by Šimkovic

and Krivoruchenko (2009), Krivoruchenko et al. (2011), and
Bernabéu and Segarra (2018). The formalism of LNV

(a) (b) (c)

FIG. 7. Hadron-level diagrams for 0ν2EC. (a) Conventional
two-nucleon mechanism. (b) One-pion exchange mechanism.
(c) Two-pion exchange mechanism.
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oscillations allows one to find a relationship between the half-
life T1=2 of the initial atom ðA; ZÞ, the amplitude of neutrino-
less double-electron capture Vαβ, and the decay width of the
intermediate atom ðA; Z − 2Þ��, which has an electromagnetic
origin.

A. Underlying formalism

The evolution of a system of mixed states, each of
which may be unstable due to the coupling with the con-
tinuum, can described by an effective non-Hermitian
Hamiltonian (Weisskopf and Wigner, 1930). In the case under
consideration, the Hamiltonian takes the form

Heff ¼
� Mi Vαβ

V�
αβ Mf − i

2
Γf

�
; ð3:1Þ

whereMi andMf are the masses of the initial and final atoms.
The width Γf of the final excited atom with two vacancies α
and β is of electromagnetic origin. The off-diagonal matrix
elements are due to a violation of lepton number conservation.
They can be chosen as real by changing the phase of one of the
states; thus, we set Vαβ ¼ V�

αβ. The real and imaginary parts of
the Hamiltonian do not commute.
We now find the evolution operator

UðtÞ ¼ expð−iHeff tÞ: ð3:2Þ

According to Sylvester’s theorem, the function of a finite-
dimensional n × n matrix A is expressed in terms of the
eigenvalues λk of the matrix A, which are solutions of the
characteristic equation detðA − λÞ ¼ 0, and a polynomial of A:

fð−iAtÞ ¼
X
k

fð−iλktÞ
Y
l≠k

λl − A
λl − λk

; ð3:3Þ

where the sum runs over 1 ≤ k ≤ n, the product runs over
1 ≤ l ≤ n, l ≠ k, and the eigenvalues are assumed to be
pairwise distinct. The matrix function fð−iAtÞ evolves with
the time t like the superposition of n terms fð−iλktÞ with the
matrix coefficients that are projection operators onto the
kth eigenstates of A.
The eigenvalues of the Hamiltonian (3.1) are equal

to λ� ¼ Mþ � Ω, where M� ¼ ðMi �MfÞ=2 ∓ iΓf=4 and

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
αβ þM2

−

q
. The values of λ� are complex, so the norm

of the states is not preserved in time. A series expansion
around V ¼ 0 yields

λþ ≈Mi þ ΔM −
i
2
Γi; ð3:4Þ

λ− ≈Mf − ΔM −
i
2
ðΓf − ΓiÞ; ð3:5Þ

with ΔM ¼ ðMi −MfÞΓi=Γf, Γi ¼ V2
αβRf, and

Rf ¼ Γf

ðMi −MfÞ2 þ ð1=4ÞΓ2
f

: ð3:6Þ

The initial state decays at the rate Γi ≪ Γf. The width Γi is
maximal for complete degeneracy of the atomic masses:

Γmax
i ¼ 4V2

αβ

Γf
: ð3:7Þ

A simple calculation gives

UðtÞ¼ expð−iMþtÞ
�
cosðΩtÞ− i

Heff −Mþ
Ω

sinðΩtÞ
�
: ð3:8Þ

The decay widths of single-hole excitations of atoms are
known experimentally and were tabulated for 10 ≤ Z ≤ 92

and principal quantum numbers 1 ≤ n ≤ 4 by Campbell and
Papp (2001). The width of a two-hole state αβ is represented
by the sum of the widths of the one-hole states Γf ¼ Γα þ Γβ.
The deexcitation width of the daughter nucleus is much
smaller and can be neglected. The values Γf are used in
estimating the decay rates Γi.
The transition amplitude from the initial to the final state for

small time t, according to Eq. (3.8), is equal to

hfjUðtÞjii ¼ −iVαβtþ � � � . ð3:9Þ

Equation (3.9) is valid for t≲ 1=jMþj and also over a wider
range t≲ 1=jΩj, given that the real part of the phase can be
made to vanish via redefinition of the Hamiltonian
Heff → Heff −ℜðMþÞ. The value of Vαβ can be evaluated by
means of field-theoretical methods that allow one to find the
amplitude (3.9) from first principles. The formalism described
in this section reproduces the results of Bernabeu, De Rujula,
and Jarlskog (1983) with respect to 0ν2EC decay rates.

B. Decay amplitude of the light Majorana neutrino exchange
mechanism

The total lepton number violation is due to the Majorana
masses of the neutrinos. It is assumed that the left electron
neutrino is a superposition of three left Majorana neutrinos:

νeL ¼
X3
i¼1

UekχkL; ð3:10Þ

FIG. 8. Oscillations of atoms induced by 0ν2EC and 0ν2β
transitions. The notations are the same as in Figs. 1 and 2. The
intermediate atom ðA; Z − 2Þ�� is coupled to the continuum
through the emission of a photon or Auger electrons. These
channels generate a finite width Γf in Eq. (3.1), and they are also
responsible for the non-Hermitian character of Heff .
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whereU is the PMNSmixing matrix. In the Majorana bispinor
representation, χkL ¼ ð1=2Þð1 − γ5Þχk and χ�k ¼ χk. The ver-
tex describing the creation and annihilation of a neutrino has
the standard form

HðxÞ ¼ GF cos θCffiffiffi
2

p jμðxÞJμhðxÞ þ H:c:; ð3:11Þ

where θC is the Cabibbo angle. The lepton and quark charged
currents are defined by Eq. (2.11). In terms of the composite
fields, the hadron charged current is given by

JμhðxÞ ¼ n̄ðxÞγμðgV − gAγ5ÞpðxÞ; ð3:12Þ

where nðxÞ and pðxÞ are the neutron and proton field
operators and gV ¼ 1 and gA ¼ 1.27 are the vector and axial-
vector coupling constants, respectively. An effective theory
could also include Δ isobars, meson fields, and their vertices
for decaying into lepton pairs and interacting with nucleons
and each other.
As a result of the capture of electrons, the nucleus ðA; ZÞ

undergoes a 0þ → Jπ transition. Conservation of total angular
momentum requires that the captured electron pair be in the
state J. In weak interactions, parity is not conserved; thus, it is
not required that the parity of the electron pair be correlated
with the parity of the daughter nucleus.
The wave function of a relativistic electron in a central

potential has the form

Ψαmα
ðrÞ ¼

� fαðrÞΩαmα
ðnÞ

igαðrÞΩα0mα
ðnÞ

�
; ð3:13Þ

where α ¼ ðn2jlÞ, α0 ¼ ðn2jl0Þ, and l0 ¼ 2j − l. The
radial wave functions are defined in agreement with
Berestetsky, Lifshitz, and Pitaevsky (1982); Ωαmα

ðnÞ≡
Ωl

jmα
ðnÞ, Ωα0mα

ðnÞ ¼ Ωl0
jmα

ðnÞ are spherical spinors in the
notation of Varshalovich, Moskalev, and Khersonskii (1988).
The normalization condition for Ψαmα

ðrÞ is given by

Z
drΨ†

αmαðrÞΨβmβ
ðrÞ ¼ δαβδmαmβ

: ð3:14Þ

If the captured electrons occupy the states α≡ ðn2jlÞ1 and
β≡ ðn2jlÞ2, we must take the superposition of products of
their wave functions:

ψJM
αβ ðr1; r2Þ ¼

X
mαmβ

CJM
jαmαjβmβ

Ψαmα
ðr1ÞΨβmβ

ðr2Þ; ð3:15Þ

where jα and jβ are the total angular momenta, mα and mβ are
their projections on the direction of the z axis, and Ψαmα

ðrÞ
and Ψβmβ

ðrÞ are the relativistic wave functions of the bound
electrons in an electrostatic mean field of the nucleus and the
surrounding electrons. The identity of the fermions implies
that the wave function of two fermions is antisymmetric; thus,
the final expression for the wave function takes the form

ΨJM
αβ ðr1; r2Þ ¼ N αβ½ψJM

αβ ðr1; r2Þ − ð−Þjαþjβ−JψJM
βα ðr1; r2Þ�;

ð3:16Þ

where N αβ equals 1=
ffiffiffi
2

p
for α ≠ β and 1=2 for α ¼ β.

As a consequence of the identity CJM
jm1jm2

¼ð−1ÞJ−2jCJM
jm2jm1

,
the wave function of two electrons with equal quantum
numbers α ¼ β is symmetric under the permutation mα ↔
mβ provided that their angular momenta are combined to the
total angular momentum J ¼ 2j mod(2). In such a case, the
antisymmetrization (3.16) yields zero, which means that
the states J ¼ 2j mod(2) are nonexistent. The antisymmetri-
zation (3.16) of the states J ¼ 2jþ 1 mod(2) leads to a
doubling of the initial wave function. To keep the norm, the
additional factor 1=

ffiffiffi
2

p
is thus required for α ¼ β.

The derivation of the equation for Vαβ is analogous to the
corresponding derivation of the 0ν2β decay amplitude, as
described by Bilenky and Petcov (1987). The specificity is
that a transition from a discrete level to a quasidiscrete level is
considered. Accordingly, the delta function expressing the
energy conservation is replaced by a time interval that can be
identified with the parameter t in Eq. (3.9). We thus write

hfjUðtÞjii ¼ −iVαβtþ � � � ; ð3:17Þ

where UðtÞ is Dyson’sU matrix. The amplitude takes the form

Vαβ ¼ iKZmββ
ffiffiffi
2

p
N αβ

�
GF cos θCffiffiffi

2
p

�
2
Z

dq
ð2πÞ3 dr1dr2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

p
X
M

e−iq⋅ðr1−r2Þ

2q0

× ½TJM
μναβðr1; r2ÞNμν

JMαβðr1; r2Þ − ð−1Þjαþjβ−JTJM
μνβαðr1; r2ÞNμν

JMβαðr1; r2Þ�; ð3:18Þ

where

TJM
μναβðr1; r2Þ ¼

X
mαmβ

CJM
jαmαjβmβ

½Ψ̄c
αmα

ðr1Þγμð1þ γ5ÞγνΨβmβ
ðr2Þ�;

Nμν
JMαβðr1; r2Þ ¼

X
n

�hJMjJμhðr1ÞjnihnjJνhðr2Þj00i
q0 þ En −Mi − εβ

þ hJMjJνhðr2ÞjnihnjJμhðr1Þj00i
q0 þ En −Mi − εα

�
:

Here q0 ≈ jqj, hJMj ¼ hfj and j00i ¼ jii are the states of the final and initial nuclei, respectively; εγ ¼ m − ε�γ , where ε�γ is the
one-hole excitation energy of the initial atom. The sum is taken over all excitations of the intermediate atom ðA; Z − 1Þ. In the
Majorana bispinor representation, Ψc

αmα
¼ Ψ�

αmα
. The amplitude Vαβ is a scalar under rotation. By virtue of identities
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TJM
μναβðr1; r2Þ ¼ −ð−1Þjαþjβ−JTJM

νμβαðr2; r1Þ;
Nμν

JMαβðr1; r2Þ ¼ Nνμ
JMβαðr2; r1Þ;

Vαβ is also invariant under permutations of α and β. For α¼β
and J¼2jαþ1mod(2), the second term in the square brackets
of Eq. (3.18) doubles the result, whereas for α ¼ β and J ¼
2jα mod(2), Vαβ ¼ 0. The factor N αβ provides the correct
normalization.
In the processes associated with the electron capture, shell

electrons of the parent atom appear in a superposition of the
stationary states of the daughter atom. The overlap amplitude
of two atoms with atomic numbers Z and Z þ ΔZ can be
evaluated for ΔZ ≪ Z in a simple nonrelativistic shell model
to give (Krivoruchenko and Tyrin, 2020)

KZ ≈ exp

�
−
35=321=3

80

ΔZ2

Z1=3

�
: ð3:19Þ

The overlap factors for 96Ru, 152Gd, and 190Pt atoms equal
KZ ¼ 0.895, 0.906, and 0.912, respectively. The result is not
sensitive to the charge. Valence-shell electrons are involved in
the formation of chemical bonds and give an important
contribution to KZ. We limit ourselves to estimating the
core-shell electron contribution that weakly depends on the
environment.
The weak charged current of a nucleus for a low-energy

transfer can be written in the form

Jμð0; rÞ ¼
X
a

τ−a ½gVgμ0 þ gAðσkÞagμk�δðr − raÞ: ð3:20Þ

Equation (3.20) neglects the contribution of the exchange
currents. The short-term contribution of some higher-
dimensional operators is dominated by the pion exchange
mechanism; see Faessler et al. (2008).
The neutrino momentum enters the energy denominators of

Eq. (3.18). The typical value of q0 is of the order of the Fermi
momentum pF ¼ 270 MeV. The remaining quantities in the
energy denominators are of the order of the nucleon binding
energy in the nucleus ∼8 MeV, i.e., substantially lower. The
energy denominators can therefore be taken out of the square
brackets such that the sum over the excited states can be
performed using the completeness condition

P
n jnihnj ¼ 1.

This approximation is called the closure approximation. The
integral over q entering Eq. (3.18) with good accuracy is
inversely proportional to the distance between two nucleons.
The decay amplitude can finally be written in the form [see
Krivoruchenko et al. (2011)]

Vαβ ≈ G2
F cos

2 θCKZmββ
g2A
4πR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jf þ 1

p
M2ECAαβ: ð3:21Þ

Here the electron and nuclear parts of the amplitude are
assumed to factorize. Such an approximation is well justified
in the case of K capture given the approximate constancy of
the electron wave functions inside the nucleus. The still-
probable capture of an electron from the p1=2 state is
determined by the lower dominant component of the electron
wave function inside the nucleus, which is also approximately

constant. The factorization is also supported by the fact of
localization of nucleons involved in the decay near the nuclear
surface.
The decay amplitude due to the operators of higher

dimension of Figs. 3(b) and 3(c) has the form of Eq. (3.21)
with the replacement

mββ
g2A
4πR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jfþ1

p
M2EC

→
X3
i¼1

βXi ðμ0;ΛÞCX
i ðΛÞþ

X5
i¼1

βXYi ðμ0;ΛÞCXY
i ðΛÞ: ð3:22Þ

The value ofAαβ entering Eq. (3.21) is the product of electron
wave functions, whose bispinor indices are contracted in a
way depending on the type of nuclear transition and the type
of operator responsible for the decay.
For the neutrino exchange mechanism, the explicit expres-

sions for Aαβ of low-J nuclear transitions 0þ → 0�; 1� in
terms of the upper and lower radial components of the electron
wave functions were given by Krivoruchenko et al. (2011).
For jα ¼ jβ ¼ 1=2 and arbitrary nα and nβ, one gets

Aαβð0þ → 0þÞ ¼ hFðþÞ
αβ ðra; rbÞi; ð3:23Þ

Aαβð0þ → 0−Þ ¼ hHðþÞ
αβ ðra; rbÞi; ð3:24Þ

Aαβð0þ → 1þÞ ≈ hFð−Þ2
αβ ðra; rbÞi1=2; ð3:25Þ

Aαβð0þ → 1−Þ ≈ h½Hð−Þ
αβ ðra; rbÞ −Hð−Þ

αβ ðrb; raÞ�2=4i1=2:
ð3:26Þ

The functions Fð�Þ and Hð�Þ depend on the radial variables ra
and rb and quantum numbers α and β of the captured

electrons. For lα ¼ lβ ¼ 0, one finds that 4πFð�Þ
αβ ðra; rbÞ ¼

N αβ½fαðraÞfβðrbÞ � fβðraÞfαðrbÞ� and 4πHð�Þ
αβ ðra; rbÞ ¼

N αβ½gαðraÞfβðrbÞ � gβðraÞfαðrbÞ�. Computation of electron
radial wave functions fαðrÞ and gαðrÞ is discussed in Sec. IV.
Nuclear-structure models for matrix elements M2EC entering
Eq. (3.21) are discussed in Sec. V.

C. Comparison of 0ν2EC and 0ν2β− decay half-lives

Here we obtain estimates for half-lives of the 0ν2EC and
0ν2β− decay, starting from the expressions by Suhonen and
Civitarese (1998). The inverse 0ν2β− half-life can be written
in the form

ðT0ν2β
1=2 Þ−1 ¼

�jmββj
m

�
2

jM2βj2G2β; ð3:27Þ

where M2β is the nuclear matrix element of the 0ν2β− decay,
m is the electron rest mass, G2β ¼ g4AK

2
Zg

ð0νÞr−2A I is the phase-
space factor, with rA ¼ mR, R ¼ 1.2A1=3 fm the nuclear
radius. KZ describes the overlap of the electron shells of
the parent and daughter atoms, including the possible ioniza-
tion of the latter. In what follows, we neglect the electron shell
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effects and set KZ ¼ 1. The factor gð0νÞ ¼ 2.80 × 10−22 yr−1

includes all the fundamental constants and other numerical
coefficients entering the half-life. The phase-space integral
reads

I ¼
Z

Q̃þ1

1

F0ðZf; ε1ÞF0ðZf; ε2Þp1p2ε1ε2dε1; ð3:28Þ

where ε1;2 are the total energies and p1;2 are the momenta
of the emitted electrons, scaled by the electron mass. Here
Q̃ ¼ Q=m is the normalized Q value of the decay. The
quantities F0ðZf; εÞ are the Fermi functions taking into
account the Coulomb interaction between the emitted
electrons and the final nucleus with charge number Zf.
The integral I can be integrated analytically by noticing that
ε2 ¼ Q̃þ 2 − ε1 and using the Primakoff-Rosen approxima-

tion F0ðZf; εÞ ¼ ðε=pÞFðPRÞ
0 ðZfÞ. This leads in a good

approximation to I ≈ 10π2α2Z2
fðQ̃þ 1Þ5=3 [see Suhonen

and Civitarese (1998)] and to the corresponding phase-space
factor G2β ¼ g4AZ

2
fA

−2=3ðQ̃þ 1Þ55 × 10−20 yr−1. Combining
with the rest of the 0ν2β observables, the inverse half-life can
be written as

ðT0ν2β
1=2 Þ−1

¼ g4A

�jmββj
m

�
2

jM2βj2Z2
fA

−2=3ðQ̃þ1Þ55.0×10−20 yr−1:

ð3:29Þ

The inverse 0ν2EC half-life is given by

ðT0ν2EC
1=2 Þ−1 ¼ Γi= ln 2≡G2ECRf; ð3:30Þ

where G2EC ¼ V2
αβ= ln 2 and Rf is defined by Eq. (3.6). For

Jπf ¼ 0þ and KZ ¼ 1, we find in the nonrelativistic approxi-
mation for two-electron capture from the lowest K shell

ðT0ν2EC
1=2 Þ−1

¼ g4A

�jmββj
m

�
2

jM2ECj2Z6
i A

−2=3α2mRf5.1 × 10−25 yr−1;

ð3:31Þ

where M2EC is the 0ν2EC nuclear matrix element.
We can now find the ratio of the two processes. Adopting

the simplification Zf≈Zi≡Z and assuming thatM2β ≈ M2EC,
one finds for the half-life ratio

T0ν2EC
1=2

T0ν2β
1=2

≈
�
20

Z

�
4 ðQ̃þ 1Þ5
α2mRf

: ð3:32Þ

Given that Γf ∼ α2m ¼ 27.2 eV, one immediately derives that
the two processes have comparable half-lives for α2mRf ∼ 1,
which is the case for jMi −Mfj≲ Γf.

IV. ELECTRON SHELL EFFECTS

The selection of atoms with near-resonant 0ν2EC transi-
tions requires an accurate value of the double-electron
ionization potentials of the atoms and the electron wave
functions in the nuclei. The electron shell models are based
on the Hartree-Fock and post-Hartree-Fock methods, density
functional theory, and semiempirical methods of quantum
chemistry. Analytical parametrizations of the nonrelativistic
wave functions of electrons in neutral atoms, obtained with the
use of the Roothaan-Hartree-Fock method and covering
almost the entire periodic table, were provided by Clementi
and Roetti (1974), McLean and McLean (1981), Snijders,
Vernooijs, and Baerends (1981), and Bunge, Barrientos, and
Bunge (1993). The various feasible 0ν2EC decays are
expected to occur in medium-heavy and heavy atoms, for
which relativistic effects are important. With the advent of
personal computers, physicists acquired the opportunity to use
advanced software packages, such as GRASP2K (Dyall et al.,
1989; Grant, 2007), DIRAC,1 CI-MBPT (Kozlov et al., 2015),
and others, for applications of relativistic computational
methods in modeling complex atomic systems.
Quantum electrodynamics (QED) of electrons and photons

is known to be a self-consistent theory within infinite
renormalizations. One could expect the existence, at least,
of a similarly formally consistent theory of electrons, photons,
and nuclei, regarded as elementary particles, which would be a
satisfactory idealization for most practical purposes.
In quantum field theory, the relativistic bound states

of two particles are described by the Bethe-Salpeter equation
(Salpeter and Bethe, 1951; Hayashi and Munakata, 1952). In
the nonrelativistic limit, this equation leads to the Schrödinger
wave equation, but it also includes additional anomalous
solutions that do not have a clear physical interpretation: First,
there are bound states corresponding to excitations of the
timelike component of the relative four momenta of the
particles. Such states have no analogs in the nonrelativistic
potential scattering theory. None of the particles observed
experimentally have been identified with the anomalous
solutions thus far. Second, some solutions appear with a
negative norm. Third, the Bethe-Salpeter kernel, evaluated at
any finite order of perturbation theory, breaks crossing
symmetry and gauge invariance of QED (Nakanishi, 1969;
Itzykson and Zuber, 1980). The anomalous solutions do not
arise when retardation effects are neglected.
Applications of the Bethe-Salpeter equation to the hydrogen

atom (Salpeter, 1952) and positronium (Itzykson and Zuber,
1980) appeared to be successful because of the nonrelativistic
character of the bound-state problems and the possibility to
account for the retardation effects with the help of perturbation
theory in terms of the small parameter 1=c.
A successful attempt at generalization of the series expan-

sion around the instantaneous approximation to multielectron

1See T. Saue, L. Visscher, H. J. Aa. Jensen, and R. Bast, with
contributions from V. Bakken et al. (2018), “DIRAC, a relativistic
ab initio electronic structure program, release DIRAC18 (2018)”
(available at https://doi.org/10.5281/zenodo.2253986; see also
http://www.diracprogram.org).
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atoms was presented by Sucher (1980) and Broyles (1988),
where the progress was achieved by using noncovariant
perturbation theory in the coupling constant α of electrons
with the transverse part of the electromagnetic vector potential
and the magnitude of Z diagrams describing creation and
annihilation of electron-positron pairs. Such a perturbation
theory appears to be well founded because the transverse
components of the electromagnetic vector potential interact
with spatial components of the electromagnetic current, which
contain the small term 1=c, whereas Z diagrams contribute to
observables in higher orders of 1=c. Compared to lowest-order
Coulomb photon exchange diagrams, Z diagrams are sup-
pressed by the factors u†v0 ∼ 1=c and v0†u ∼ 1=c in each of
the photon vertices due to overlapping of the small and large
bispinor components and the factor 1=c2 originating from the
propagator of the positron. As a result, Z diagrams are of the
order of Oðα2=c4Þ. The second-order correction to the energy
due to the Fermi-Breit potential is of the same magnitude.
The exchange of transverse photons leading to the Fermi-
Breit potential contributes to the interaction potential of the
order of α=c2, such that the magnitude of the Z diagrams is
suppressed. The scheme adopted by Sucher (1980) and
Broyles (1988) is equivalent to neglecting the Dirac sea at
the zeroth-order approximation, except for the two-body
problem, in which the bound-state energy equation is the
same as given by Salpeter (1952). The no-sea approximation
is widely used to study nuclear matter in the Dirac-Brueckner-
Hartree-Fock method (Anastasio et al., 1983; Brockmann and
Machleidt, 1984; ter Haar and Malfliet, 1987). We remark that
the negative-energy fermion states are required to ensure
causality and guarantee Lorentz invariance of the T product
and hence of the S matrix.
The self-consistent nonrelativistic expansion becomes

possible because the corrections related to the finite speed
of light are small. The neglect of retardation allows for the
formulation of an equation for the Bethe-Salpeter wave
function integrated over the relative energy of the particles
(Broyles, 1988). The noncovariant wave function obtained
in this manner yields the wave function of the equivalent
many-body noncovariant Schrödinger equation. Gauge
invariance of QED ensures the Lorentz invariance of the
theory, but in the intermediate stages of the computation it is
necessary to work with Lorentz-noncovariant and gauge-
dependent expressions.
In the Feynman gauge, the product of the two photon

vertices and the photon propagator

DμνðkÞ ¼
−gμν
k2

ð4:1Þ

is represented as follows:

eγμ1DμνðkÞeγν2 ¼ −γ01γ02
e2

k2
ð1 − α1α2Þ; ð4:2Þ

where k ¼ ðω;kÞ is the photon momentum, αi ¼ γ0i γi are
velocity operators for the particles i ¼ 1; 2, and γμ are the
Dirac γ matrices. The corresponding interaction potential
obtained in the static limit

VCGðrÞ≡
Z

dk
ð2πÞ3 expðik ⋅ rÞeγ01γμ1Dμνðω ¼ 0;kÞeγ02γν2

¼ e2

4πr
ð1 − α1α2Þ ð4:3Þ

acquires a familiar form of electrostatic interaction energy of
charges plus magnetostatic interaction energy of electric
currents. The correction to the Coulomb potential entering
Eq. (4.3) was first derived quantum mechanically by Gaunt
(1929). The expansion of DμνðkÞ in higher powers of ω
describes retardation effects, which are expected to be most
pronounced for inner orbits. A typical splitting of the energy
levels is ω ∼ α2Z2m, and a typical momentum of electrons is
jkj ∼ αZm, such that for light and medium-heavy atoms the
expansion parameter ω2=k2 ∼ ðαZÞ2 is still sufficiently small.
The potential of Eq. (4.3) is known as the Coulomb-Gaunt
potential. Such a potential can be used to approximate the
lowest-order interaction of electrons, although the magneto-
static energy ∼1=c2 is of the same order as the retardation
corrections to the Coulomb potential.
In the Coulomb gauge, the photon propagator DμνðkÞ takes

the form

D00ðkÞ ¼
1

k2
;

DijðkÞ ¼
δij − kikj=k2

k2
;

Di0ðkÞ ¼ D0jðkÞ ¼ 0; ð4:4Þ

where i; j ¼ 1; 2; 3. The Coulomb gauge breaks Lorentz
covariance but appears natural in the problem of quantization
of the electromagnetic field, since it allows for explicitly
solving the constraint equations. The photon propagator
appears split in two pieces, the first of which corresponds
to the instantaneous interaction; the second describes the static
terms ∼1=c2 plus retardation effects ∼1=c4. The potential of a
zeroth-order approximation contains contributions from the
timelike components and the spacelike component of the
propagator in the limit of ω ¼ 0. The product of the two
photon vertices and the propagator (4.4) is represented by

eγμ1DμνðkÞeγν2 ¼ γ01γ
0
2

�
e2

k2
þ e2

k2

�
α1α2 −

α1kα2 · k
k2

��
:

ð4:5Þ

The interaction potential corresponding to the static limit of
Eq. (4.5) becomes

VCBðrÞ ¼
e2

4πr

�
1 −

α1α2 þ α1nα2 · n
2

�
; ð4:6Þ

where n ¼ r=jrj. Equation (4.6) can be recognized as the sum
of the classical Coulomb and Darwin potentials (Darwin,
1920), which demonstrates the essentially classical origin of
VCB. The no-sea approximation is thus sufficient to ensure the
correct expression for VCB. The potential VCB given by
Eq. (4.6) was first derived quantum mechanically by Breit
(1929); it is known as the Coulomb-Breit potential. Starting
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with VCB is a natural choice, since the retardation effects in
this case are of the order of 1=c4.
The techniques of Sucher (1980) and Broyles (1988) can be

considered as the starting point for developing a systematic
1=c expansion around the instantaneous approximation in the
bound-state problem for light and medium-heavy atoms in
analogy with positronium and the hydrogen atom. Heavy
atoms for which the expansion parameter 1=c is not small are
somewhat beyond the scope of perturbational treatment. Since
theoretical estimates of accuracy are difficult, it is required to
compare model predictions with empirical data wherever
possible.
The relativistic approach is based on the Dirac-Coulomb

Hamiltonian

H ¼
X
i

�
αpi þ βm −

αZ
ri

�
þ
X
i<j

Vðri − rjÞ; ð4:7Þ

where the sum runs over electrons ri ¼ jrij. The potential
VðrÞ is, as a rule, taken to be the Coulomb-Breit potential,
which already accounts for relativistic effects ∼1=c2 at the
lowest order of the perturbation expansion. Neglecting the
Dirac sea could require the projection of the potential onto
positive energy states. The electron wave function is con-
structed as a Slater determinant of one-electron orbitals.
Solutions to the eigenvalue problem are sought using the
Dirac-Hartree-Fock approximation.
In the nonrelativistic Coulomb problem, physical quantities

are determined by a single parameter, which is the Bohr radius
aB ¼ 1=αm ¼ 5.2 × 104 fm. In the relativistic problem, the
Bohr radius acts as a scale, which determines the normaliza-
tion of electron wave functions and the integral characteristics,
such as the interaction energies of holes in the electron shell. In
addition to the Bohr radius, there are other scales of the
relativistic problem. The electron Compton wavelength λe ¼
1=m determines the distance from the nucleus at which the
electron should be considered in a relativistic manner.
On a scale smaller than 1=m, the nonrelativistic wave
function is markedly different than the upper component
of the Dirac wave function; thus, the effects associated
with the finite size of the nucleus must be calculated on the
basis of the relativistic Dirac equation. The third scale in
the hierarchy is the distance αZ=m ¼ 2.8Z fm at which the
Coulomb potential becomes greater than the electronmass. The
smallest (fourth) scale is the nuclear radius R ¼ 1.2A1=3 fm.
The size of the 238U nucleus is approximately 35 times smaller
than αZ=m ¼ 260 fm, approximately 50 times smaller than the
Compton wavelength 1=m ¼ 390 fm, and approximately 75
times smaller than 1=αmZ ¼ 580 fm. The depth of the poten-
tial extending from 0 to αZ=m is too small to produce bound
states of electrons in the negative continuum.
According to the Thomas-Fermi model, the majority of the

shell electrons are at a distance 1=αmZ1=3 from the nucleus,
and the total binding energy of the electrons scales as
20.8Z7=3 eV. The potential energy of the interaction of
electrons with each other is 1=7 of the energy of the
interaction of electrons with the nucleus. The numerical
smallness of the electron-electron interaction shows that the

Coulomb wave functions of electrons can be used as a first
approximation to the self-consistent mean-field solutions.
The single-electron ionization potentials (SEIPs) of inner-

most orbits, which are of specific interest to the 0ν2EC
problem, increase quadratically with Z from 13.6 eV in the
hydrogen atom up to 115.6 keV in the uranium atom. The radii
of the outer orbits and hence the size of the atoms do not
depend on Z. The SEIPs of outermost orbits are of the order of
a few eV for all Z. The greatest overlap with the nucleus is
achieved for electrons of the innermost orbits. In the ðA; ZÞ →
ðA; Z − 2Þ transitions associated with the 0ν2EC decays, we
are interested in the electron wave functions inside the parent
nucleus ðA; ZÞ, whereas the energy balance is provided by the
energy of the excited electron shells of the daughter nucleus
ðA; Z − 2Þ. The SEIPs of all orbitals across the entire periodic
table were given by Larkins (1977), where experimental data
on the binding energy of electron subshells and data obtained
from Hartree-Fock atomic calculations were combined within
a general semiempirical method.
The double-electron ionization potentials (DEIPs) are

additive to first approximation. A more accurate estimate of
DEIPs takes into account the interaction energy of electron
holes, relaxation energy, and other specific effects. In the
innermost orbitals, the Coulomb interaction energy of two
holes is of the order of αZ=aB ∼ α2Zm. This energy grows
linearly with Z and reaches a value of ∼1 keV in heavy atoms.
The relaxation energy for a medium-heavy atom of 101Ru
reaches a value of 400 eV (Niskanen et al., 2011). The two-
hole excitation energy of the daughter atoms differs from the
corresponding DEIP by the sum of the energies of two
outermost occupied orbits, approximately 10 eV.
The required accuracy of two-hole excitation energies is

dictated by the typical width of vacancies of electron shells,
which is approximately 10 eV. This accuracy is required to
specify the 0ν2EC transitions in the unitary limit. The best
achieved accuracy in the Q-value measurements with Penning
traps is of the order of 10 eV for heavy systems, and
furthermore the DEIP calculations for heavy atoms are
successful to within several tens of eV. To realistically
calculate the excitation energies and the short-distance com-
ponents of electron wave functions, we use the GRASP2K
software package (Dyall et al., 1989; Grant, 2007), which is
well founded theoretically and successful in the description of
a wide range of atomic physics data.

A. Interaction energy of electron holes

The average electron velocity v=c ∼ αZ=n increases with
the nuclear charge and becomes large in heavy atoms. In a
uranium atom, an electron on the K shell, localized at an
average distance aB=Z ∼ 600 fm from the nucleus, moves at a
speed of v ∼ 0.7c. A fully relativistic description is thus
required to construct accurate electron wave functions inside
the nucleus.
The wave function of a relativistic electron in a central

potential is defined in Eq. (3.13). We consider transitions
between nuclei with good quantum numbers. In what follows,
Ji and Jf are the total angular momenta of the parent and
daughter nuclei and ji and jf are the total angular momenta of
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electron shells in the initial and final states, respectively.
The daughter nucleus ðA; Z − 2Þ inherits the electron shell
of the parent nucleus ðA; ZÞwith two electron holes formed by
the electron capture and possible excitations of spectator
electrons into vacant orbits. The total angular momentum of
the captured electrons J is in the interval maxðjJf − Jij;
jjf − jijÞ ≤ J ≤ minðJf þ Ji; jf þ jiÞ.
Let Jtoti ¼ Ji þ ji and Jtotf ¼ Jf þ jf be the total angular

momenta of atoms in the initial and final states, respectively.
The reaction involves the nucleus and two electrons, whereas
Z − 2 electrons are spectators that can be excited due to the
nuclear recoil or the nonorthogonality of the initial- and final-
state electron wave functions. Total angular-momentum con-
servation implies that Jtotf ¼ Jtoti as well as Jf ¼ Ji þ J
and jf þ J ¼ ji.
The atomic-state wave function with definite ji is a super-

position of configuration states, which are antisymmetric
products of the one-electron orbitals (3.13). For Jtoti ≠ 0,
the atomic-state wave function is further superimposed with
the wave function of the nucleus. The atomic states are split
into levels with typical energy separation of fractions of
electron volts. Transitions between these levels produce
radiation in the short-wavelength and midwavelength infrared
ranges. Such effects lie beyond the energy scale in which we
are interested 10 eV. Since at room temperature atoms are in
their ground states, each time we select the lowest-energy
eigenstate. In the 0ν2EC decays, the spin of the initial nucleus
is zero, in which case the configuration space reduces and the
calculations simplify.
The capture from the s1=2 and p1=2 orbits occurs with the

dominant probability, which restricts the admissible values of
Jπ to 0�; 1�. The higher orbits, relevant to the daughter nuclei
with Jf ≥ 2, thus may be disregarded. The spin J is the
suitable quantum number for the classification of transitions.
After capturing the pair, the atomic-state wave function is

still a superposition of configuration states, onto which the
states with various jf are further superimposed. The typical
level splitting is a fraction of an electron volt, whereas
the radiation width of the excited electron shell is about
10 eV. This is the case for overlapping resonances. The
influence of the coherent overlap on the 0ν2EC decay has
not been discussed thus far. We sum all the contributions
decoherently.
The two-electron wave function has the total angular

momentum J, projection M, and a definite parity. This can
be arranged by weighting the product of wave functions of
one-electron orbitals (3.13) with the Clebsch-Gordan coef-
ficients, as done in Eq. (3.15). The Pauli principle says that the
wave function must be antisymmetric under an exchange of
two electrons. The normalized antisymmetric two-electron
wave function takes the form shown in Eq. (3.16). The
interaction energy of electron holes in the static approximation
can be found from

ϵ ¼
Z

dr1dr2Ψ
JM†
βδ ðr1; r2ÞVðr1 − r2ÞΨJM

βδ ðr1; r2Þ; ð4:8Þ

where VðrÞ is the Coulomb-Gaunt potential (4.3) or the
Coulomb-Breit potential (4.6).

The interaction energy (4.8) is given by the matrix element
of the two-particle operator. In such cases, the angular
variables are explicitly integrated out and the problem is
reduced to the calculation of a two-dimensional integral in the
radial variables; see Grant (2007). We present results of this
reduction needed to demonstrate the independence of the
interaction energy from the gauge.

1. Electrostatic interaction

The interaction energy in the static approximation splits
into the sum of the electrostatic and magnetostatic energies
ϵ ¼ ϵE þ ϵM. The Coulomb part ϵE does not depend on the
gauge condition. Equation (4.8) can be written in the form

ϵE ¼
Z

dr1dr2Ψ
JM†
βδ ðr1; r2Þ

α

r
ΨJM

βδ ðr1; r2Þ

¼ 2N 2
βδ½KJM

βδβδ − ð−Þjβþjδ−JKJM
βδδβ�; ð4:9Þ

where 4πα ¼ e2, r ¼ jr1 − r2j, and

KJM
αγβδ ¼

X
mαmγmβmδ

CJM
jαmαjγmγ

CJM
jβmβjδmδ

K
αmαγmγ

βmβδmδ
; ð4:10Þ

with

K
αmαγmγ

βmβδmδ
¼
Z

dr1dr2Ψ
†
αmαðr1ÞΨβmβ

ðr1Þ
α

r
Ψ†

γmγ ðr2ÞΨδmδ
ðr2Þ.

The Hermitian product of spherical spinors weighted with a
spherical harmonic and integrated over angles can be repre-
sented as

Z
dΩnΩ

†
αmαðnÞΩβmβ

ðnÞYlmðnÞ ¼ Cjαmα
jβmβlm

Al
αβ; ð4:11Þ

where jjα − jβj ≤ l ≤ jα þ jβ,

Al
αβ¼ð−Þ1=2þjβþlαþl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½l�½lβ�½jβ�

4π

r
Clα0
lβ0l0

�
1=2 lβ jβ
l jα lα

�
; ð4:12Þ

and ½x� ¼ 2xþ 1. By introducing the unit matrix ðσnÞ2 ¼ 1

between the spherical spinors of Eq. (4.11) and taking into
account the identity σnΩαmα

ðnÞ ¼ −Ωα0mα
ðnÞ, one obtains

Al
αβ ¼ Al

α0β0 . The angular integral of the Hermitian product of
the electron wave functions and a spherical harmonic leads to

Z
dΩnΨ

†
αmαðnÞΨβmβ

ðnÞYlmðnÞ ¼ Cjαmα
jβmβlm

F l
αβðrÞ; ð4:13Þ

where F l
αβðrÞ is defined by

F l
αβðrÞ ¼ ½fαðrÞfβðrÞ þ gαðrÞgβðrÞ�Al

αβ: ð4:14Þ

The electrostatic interaction integral takes the form
(Krivoruchenko et al., 2011)
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KJM
αγβδ ¼ α

X
l

4π

2lþ 1
CJlαγβδ

Z
r21dr1r

2
2dr2

rl<
rlþ1
>

F l
αβðr1ÞF l

γδðr2Þ;

ð4:15Þ

where ri ¼ jrij, r< is the lesser and r> is the greater of r1 and
r2, and

CJlαγβδ ¼ ð−1ÞjγþjβþJ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
½jα�½jγ�

q �
l jδ jγ
J jα jβ

�
: ð4:16Þ

The interaction energy is invariant under rotations; thus, KJM
αγβδ

does not depend on the spin projection M.

2. Retardation correction in the Feynman gauge

The timelike component of the free photon propagator
in the Feynman gauge, expanded in powers of the small
parameter ω2=k2 ∼ ðαZÞ2 ∼ 1=c2, takes the form

D00ðω;kÞ ¼
1

k2
þ ω2

k4
þ � � � : ð4:17Þ

The second term provides the lowest-order retardation cor-
rection to the Coulomb interaction energy of electrons

ΔϵE ¼ −α
Z

dr1dr2Ψ
JM†
βδ ðr1; r2Þ

ω2r
2

ΨJM
βδ ðr1; r2Þ; ð4:18Þ

where ω is the energy of virtual photon and −r=2 is the
Fourier transform of 4π=k4, obtained using the analytical
continuation in z of

Z
dk

ð2πÞ3
4π

jkjz e
ik⋅r ¼ rz−3Γ(ð3 − zÞ=2)

2z−2
ffiffiffi
π

p
Γðz=2Þ :

ΔϵE is of the same order as the magnetostatic interaction
energy.
The angular variables can be integrated out, as in the case of

the instantaneous Coulomb interaction. We write Eq. (4.18) in
the form

ΔϵE ¼ 2N 2
βδ½ΔKJM

βδβδ − ð−Þjβþjδ−JΔKJM
βδδβ�; ð4:19Þ

where

ΔKJM
αγβδ ¼

α

2

X
l

4π

2lþ 1
CJlαγβδðϵ�α − ϵ�βÞðϵ�γ − ϵ�δÞ

×
Z

r21dr1r
2
2dr2

rl<
rlþ1
>

�
r2<

2lþ 3
−

r2>
2l − 1

�
× F l

αβðr1ÞF l
γδðr2Þ: ð4:20Þ

One can observe that only the exchange interaction α ¼ δ ≠
γ ¼ β contributes to ΔKJM

αγβδ ≠ 0, whereas ΔKJM
αγβδ ¼ 0 for the

direct interaction α ¼ β ≠ γ ¼ δ and ΔKJM
αγβδ ¼ 0 if the

electrons occupy the same shell α ¼ β ¼ γ ¼ δ. The retarda-
tion corrections of higher orders can be calculated in a similar

manner. In the Coulomb gauge, the retardation corrections to
the electrostatic interaction energy vanish.

3. Magnetostatic interaction in the Feynman gauge

The magnetostatic part of the interaction energy (4.3) can
be represented in a form similar to Eq. (4.9):

ϵM ¼ −α
Z

dr1dr2Ψ
JM†
βδ ðr1; r2Þ

α1α2
r

ΨJM
βδ ðr1; r2Þ

¼ 2N 2
βδ½MJM

βδβδ − ð−Þjβþjδ−JMJM
βδδβ�; ð4:21Þ

where

MJM
αγβδ ¼

X
mαmγmβmδ

CJM
jαmαjγmγ

CJM
jβmβjδmδ

M
αmαγmγ

βmβδmδ
; ð4:22Þ

with

M
αmαγmγ

βmβδmδ
¼ −

Z
dr1dr2Ψ

†
αmαðr1ÞαΨβmβ

ðr1Þ
α

r
Ψ†

γmγ ðr2Þ

× αΨδmδ
ðr2Þ:

The angular integrals are calculated with the use of

Z
dΩnΩ

†
αmαðnÞσΩβmβ

ðnÞYlmðnÞ ¼ eμ
X
j

Cjαmα
jβmβjκ

Cjκ
1μlmB

jl
αβ;

ð4:23Þ

where eμ are basis vectors of the cyclic coordinate system
(Varshalovich, Moskalev, and Khersonskii, 1988), the sum
runs over j¼ l, l� 1, for κ ¼ mα −mβ and μ ¼ mα−
mβ −m, and

Bjl
αβ ¼ ð−Þjα−jβþlαþlβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3½j�½jβ�½l�½lβ�

2π

r
Clα0
lβ0l0

8<
:

lα jα 1=2

lβ jβ 1=2

l j 1

9=
;:

ð4:24Þ
The transition current projection on a spherical harmonic

can be found to be

Z
dΩnΨ

†
αmαðrÞαΨβmβ

ðrÞYlmðnÞ

¼ −ieμ
X
j

Cjαmα
jβmβjκ

Cjκ
1μlmG

jl
αβðrÞ; ð4:25Þ

where

Gjl
αβðrÞ ¼ gαðrÞfβðrÞBjl

α0β − fαðrÞgβðrÞBjl
αβ0 : ð4:26Þ

The sum over j runs within the limits jjα − jβj ≤ j ≤ jα þ jβ,
whereas l are constrained by jj − 1j ≤ l ≤ jþ 1.
The interaction integral over the radial variables takes

the form

K. Blaum et al.: Neutrinoless double-electron capture

Rev. Mod. Phys., Vol. 92, No. 4, October–December 2020 045007-17



MJM
αγβδ ¼ −e2

X
jl

4π

2lþ 1
ð−1Þj−lCJjαγβδ

Z
r21dr1r

2
2dr2

rl<
rlþ1
>

Gjl
αβðr1ÞGjl

γδðr2Þ: ð4:27Þ

4. Magnetostatic interaction in the Coulomb gauge

In the Coulomb-Breit potential, the magnetostatic inter-
action energy is given by

ϵ0M¼−α
Z

dr1dr2Ψ
JM†
βδ ðr1;r2Þ

α1α2þðα1nÞðα2nÞ
2r

ΨJM
βδ ðr1;r2Þ:

ð4:28Þ

Using identity ninj=r ¼ δij=r −∇i∇jr, we integrate the
derivative term by parts. The result can be written in the
form ϵ0M ¼ ϵM þ ΔϵM, with ϵM given by Eq. (4.21) and

ΔϵM ¼ 2N 2
βδ½ΔMJM

βδβδ − ð−1Þjβþjδ−JΔMJM
βδδβ�: ð4:29Þ

The variance of the magnetostatic interaction energy is
determined by

ΔMJM
αγβδ ¼

X
mαmγmβmδ

CJM
jαmαjγmγ

CJM
jβmβjδmδ

ΔMαmαγmγ

βmβδmδ
; ð4:30Þ

with

ΔMαmαγmγ

βmβδmδ

¼−
α

2

Z
dr1dr2½∇Ψ†

αmα
ðr1ÞαΨβmβ

ðr1Þ�r½∇Ψ†
γmγ

ðr2ÞαΨδmδ
ðr2Þ�:

The divergence of the transition current projected onto a
spherical harmonic can be found to be

Z
dΩn½∇Ψ†

αmαðrÞαΨβmβ
ðrÞ�YlmðnÞ ¼ −iCjαmα

jβmβlm
Hl

αβðrÞ;

ð4:31Þ

where

Hl
αβðrÞ ¼

�
−
�
d
dr

þ 2 − κα þ κβ
r

�
gαðrÞfβðrÞ

þ
�
d
dr

þ 2þ κα − κβ
r

�
fαðrÞgβðrÞ

�
Al

αβ:

The variance of the magnetostatic interaction energy
becomes

ΔMJM
αγβδ ¼

α

2

X
l

4π

2lþ 1
CJlαγβδ ×

Z
r21dr1r

2
2dr2

rl<
rlþ1
>

�
r2<

2lþ 3
−

r2>
2l − 1

�
Hl

αβðr1ÞHl
γδðr2Þ: ð4:32Þ

5. Gauge invariance of the interaction energy of electron holes

The wave function Ψαmα
ðrÞ is assumed to satisfy the Dirac

equation in a mean-field potential UðrÞ created by the nucleus
and surrounding electrons. The divergence of the transition
current between states with energies ϵ�α and ϵ�β equals

∇Ψ†
αmα

αΨβmβ
¼ −iðϵ�α − ϵ�βÞΨ†

αmαΨβmβ
: ð4:33Þ

We substitute this expression into Eq. (4.31). A comparison
with Eq. (4.13) gives

Hl
αβðrÞ ¼ ðϵ�α − ϵ�βÞF l

αβðrÞ; ð4:34Þ

and there is a similar relationship forHl
γδðrÞ. The contribution

of the direct interaction to ΔϵM vanishes such that ΔϵM ¼ 0

for electrons of the same shell α ¼ β ¼ γ ¼ δ, whereas
the exchange interaction for α ¼ δ ≠ γ ¼ β contributes
to ΔϵM ≠ 0.
The function F l

αβðrÞ entering Eq. (4.34) appeared earlier
in the interaction energy integrals (4.15) and (4.20). As a
consistency check, we observe thatΔϵM is equal to the lowest-
order retardation correction ΔϵE to the Coulomb potential in

the Feynman gauge. We thus conclude that the two-electron
interaction energy on the order of 1=c2 does not depend on the
gauge condition. The gauge independence of the interaction
energy of two electrons is thus demonstrated without assum-
ing a specific type of mean-field potential UðrÞ. In positro-
nium, the calculation of bound-state energies is performed on
the order of Oðα3Þ using an Oðα2Þ approximation for the
Bethe-Salpeter kernel, which is sufficient for gauge invariance
on the order of Oðα3Þ.
For noble gas atoms Ne, Ar, Kr, Xe, and Rn, the difference

between magnetostatic interaction energies in the Feynman
and Coulomb gauges equals 0.01, 0.10, 1.39, 5.76, and
26.96 eV for SEIP and 0.02, 0.25, 3.04, 12.16, and
55.72 eV for DEIP, respectively (Niskanen et al., 2011).
The variance does not exceed 60 eV. The origin of this
variance can be attributed to the retardation part of the
Coulomb interaction energy in the Feynman gauge. One
can expect the atomic structure models to consistently
determine the energy conditions for the 0ν2EC decays with
an accuracy of several tens of eV or better.
The proof of gauge invariance of QED of electrons and

photons is based on the Ward-Green-Fradkin-Takahashi iden-
tity (Ward, 1950; Green, 1953; Fradkin, 1955; Takahashi,
1957). The diagrams without self-energy insertions into
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electron lines are known to be gauge invariant on shell;see
Bjorken and Drell (1965) and Bogoliubov and Shirkov
(1980). The electron self-energy part, or the mass operator
Σ, depends on the gauge, which can be demonstrated
explicitly in a one-loop calculation (Itzykson and Zuber,
1980) and to all orders of perturbation theory (Johnson and
Zumino, 1959). The off-shell Green’s functions depend on the
gauge. A complete proof of the gauge invariance of the
physical cross sections in QED of electrons and photons was
first given by Bialynicki-Birula (1970). The equivalence of
covariant Lorenz gauge and noncovariant Coulomb gauge
also implies the invariance of QED with respect to Lorentz
transformations. There is currently no proof of the gauge
invariance of QED of multielectron atoms in higher orders
of the 1=c2 expansion. The difficulties are caused by the
existence of bound states as asymptotic states of the theory.
Proofs by Bjorken and Drell (1965), Bialynicki-Birula (1970),
and Bogoliubov and Shirkov (1980) do not apply to diagrams
whose fermion lines belong to wave functions of bound states.
We believe that the uncertainties inherent in the exitation
energies of multielectron atoms are entirely related to com-
plexity in modeling the atomic systems. In the previously
discussed shell model, the Feynman and Coulomb gauges
provide identical results up to the order of α2Ry.

B. Double-electron ionization potentials in Auger spectroscopy

To determine the energy released in the 0ν2EC process, it is
necessary to know the energy of the excited electron shell of
the neutral daughter atom with two core-level vacancies and
two extra valence electrons inherited from the electron shell of
the parent atom. The binding energy of valence electrons
usually does not exceed several eV, which is lower than the
required accuracy of 10 eV; thus, these two electrons are of no
interest. To estimate the excitation energy, if this simplifies the
task, they can be removed from the shell. The resulting atoms
with a charge of þ2 can be created in the laboratory by
irradiating the substance composed of these atoms by elec-
trons or x rays. Among the knocked-out electrons, one can
observe electrons that arise from the so-called Auger process,
schematically shown in Fig. 9. The narrow structures in the
energy distribution of the knocked-out electrons correspond to
transitions between the atomic levels. The study of these
structures allows for the estimation of the excitation energy of
the electron shell with two vacancies relevant for the 0ν2EC
decays.
When the surface of the substance is bombarded with

photons or electrons with energy sufficient for ionization of
one of the inner shells of the atom, a primary vacancy occurs
(γ), as shown in the left panel of Fig. 9. This vacancy is filled
in a short time by an electron from a higher orbit, e.g., L1, as
illustrated in the right panel in Fig. 9. During the transition to a
lower orbit, the electron interacts with the neighboring
electrons via the Coulomb force and transmits to one of them
energy sufficient for its knocking out to the continuum state.
The resulting atom has two secondary vacancies α and β plus
one ejected Auger electron. Let ϵ�γ be the binding energy of the
first knocked-out electron (photoelectron). The energy of the
shell with one vacancy equals ϵ�γ . If ϵ�α and ϵ�β are the energies

of single vacancies, the energy of the shell with two vacancies
is the sum of single excitation energies ϵ�α þ ϵ�β plus the
Coulomb interaction of holes and relativistic and relaxation
effects, which we denote by Δϵ�αβ. The kinetic energy of the
photoelectron equals

ϵkin ¼ ω − ϵ�γ − ϕ; ð4:35Þ

where ω is the photon energy and ϕ is the work function. In
solid-phase systems ϕ is equal to a few eV, and in vapor-phase
systems ϕ ¼ 0. The energy of the Auger electron is also
determined by the conservation of energy

ϵAkin ¼ ϵ�γ − ϵ�αβ − ϕ; ð4:36Þ

where

ϵ�αβ ¼ ϵ�α þ ϵ�β þ Δϵ�αβ: ð4:37Þ

These equations show that the photoelectron energy spec-
trum contains information about the single-hole excitation
energies, whereas the Auger-electron energy spectrum allows
for the measurement of the two-hole excitation energies of
electron shells. These energies occur in the energy balance of
the 0ν2EC transitions. We consider the experimental values
of excitation energies ϵ�αβ to estimate the probability of 0ν2EC
decays as the preferable choice. As can be seen also from
Fig. 9, not all combinations of vacancies are available for the
measurement. Auger electrons are associated with vacancies
nα ≥ 2 and nβ ≥ 2. When experimental data are not available,
we perform calculations using the GRASP2K package.
The main question is whether or not it is possible to

calculate the two-hole excitation energy of atoms with an
accuracy of 10 eV, which is attainable experimentally in

FIG. 9. Schematic representation of Auger-electron knockout
by x-ray photons (q2 ¼ 0) or by virtual photons (q2 ≠ 0) emitted
by electrons irradiating the surface of a sample. In the first stage,
the K shell electron is excited to a continuum state (left panel).
The resulting vacancy γ is filled with an electron from the L1 shell
(α), which is accompanied by the radiation of a virtual photon to
knock out an electron β from the L2 or L3 shell (right panel). The
excitation energy ε�γ goes to the formation of the vacancies α and
β and the kinetic energy εAkin of the Auger electron. By measuring
the energy of the knocked-out electrons, it is possible to
determine the peaks at energy values of the corresponding
transitions.
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Penning-trap mass spectrometry and is typical of the natural
widths of two-hole excitations.
To estimate the magnitude of uncertainty, we first consider

the total binding energy of inert gas atoms. Table I summarizes
the results of our calculations performed using the GRASP2K
software package. These results are compared to those from
Lu et al. (1971), Desclaux (1973), and Huang et al. (1976).
For light atoms, the variance is negligible. For the medium-
heavy nucleus Xe, the variance does not exceed 120 eV. For
Rn, the variance does not exceed 1 keV; the case of heavy
atoms should be treated with caution.
An estimate of the uncertainties in the energy of single-hole

excitations can be obtained from Table II, where the results of
the GRASP2K package are compared with the data of Larkins
(1977), obtained within the framework of a general semi-
empirical method that takes into account experimental data on
the binding energy of electron subshells and results of Hartree-
Fock atomic calculations. For heavy atoms, the mismatch is
basically of the order of 10 eVor less, and it is always less than
20 eV. The claimed accuracy of Larkins’s data is a few eV for
light atoms and 10 eV for heavy atoms.
The energies of two-hole excitations of the inert gas atoms

of Ne and Ar are collected in Table III; these data can be
further supplemented by the results of calculating the energy
of two-hole excitations of Kr, Xe, and Rn. The results for
2 ≤ nα ≤ 3 and 2 ≤ nβ ≤ 3 are compared to the semiempirical
values extracted from the energy spectrum of Auger electrons
(Larkins, 1977). The second column of these tables lists the
total angular momentum J of the two holes; the sums of the

energies of the single-particle excitations and the energy of
two-hole excitation, determined on the basis of Auger
spectroscopy data, are then presented. Column 5 reports
two-hole excitation energy according to our calculations using
the GRASP2K package. The last column contains quantum
numbers of the pair ðn; 2j; lÞ. We remark that n and l are
integers, j are half integers, and 2j are odd. Mixing occurs if
some states of the pair arise in two or more combinations. The
mixing matrix is presented in column 6. For mixed states,
column 5 lists the energy eigenvalues. For example, for
the Ar atom, the vacancies jð210Þð211Þi≡ j2s1=22p1=2i and
jð210Þð231Þi≡ j2s1=22p3=2i with J ¼ 1 are mixed, whereby
the eigenstates have the form

jJ¼ 1;631.2 eVi¼ 0.612jð210Þð211Þiþ0.791jð210Þð231Þi;
jJ¼ 1;606.8 eVi¼ 0.791jð210Þð211Þi−0.612jð210Þð231Þi:

The energy of these states are 631.2 and 606.8 eV, respectively.
Larkins (1977) did not take into account such mixing. In the
previous example, the difference between the energies of the
holes with and without the mixing is small. In the case of Xe,
the deviation from the semiempirical values of Larkins (1977)
does not exceed 10 eV, whereas for Rn the deviation does not
exceed 40 eV. The deviation is negligible for light atoms.
The energies of the electron shells of noble gas atoms with

double-K holes were calculated by Niskanen et al. (2011). We
obtain good agreement for Ne, Ar, Kr, and Xe, but the results
are noticeably different for Rn. Niskanen et al. (2011) gave

TABLE I. Total binding energies of neutral noble gas atoms in eV. Column 2 shows our calculations using the GRASP2K package. The last
three columns show the results of Lu et al. (1971), Desclaux (1973), and Huang et al. (1976).

Element GRASP2K Lu et al. (1971) Desclaux (1973) Huang et al. (1976)

Ne 3501.1 3472.0 3501.4 3500.8
Ar 14 380.1 14 072.6 14 382.3 14 382.1
Kr 75 823.8 75 739.0 75 845.8 75 851.7
Xe 202 379.5 202 402.7 202 465.3 202 498.4
Rn 640 906.9 641 899.1 641 348.1 641 591.6

TABLE II. Single-electron ionization potentials for the noble gas series from Ne to Rn in eV. The second and sixth columns list the hole
quantum numbers: n is the principal quantum number, j is the total angular momentum, and l is the orbital momentum. Columns 3 and 7 present
results of our calculations using the GRASP2K package. Columns 4 and 8 list the results of Larkins (1977).

Element n2jl GRASP2K Larkins (1977) Element n2jl GRASP2K Larkins (1977)

Ne 110 869.3 870.1 310 1151.4 1148.7
Ar 110 3205.8 3206.0 311 1005.5 1002.1

210 327.0 326.3 331 943.3 940.6
211 250.3 250.7 410 222.6 213.3
231 248.2 248.6 411 169.2 145.5

Kr 110 14 325.9 14 325.6 431 156.8 145.5
210 1930.7 1921.0 Rn 110 98 390.5 98 397.0
211 1732.3 1727.2 210 18 061.8 18 048.0
231 1679.3 1674.9 211 17 335.6 17 328.0
310 295.9 292.1 231 14 614.2 14 610.0
311 225.1 221.8 310 4489.7 4473.0
331 217.0 214.5 311 4164.4 4150.0

Xe 110 34 562.4 34 564.4 331 3542.8 3529.0
210 5458.8 5452.8 410 1104.9 1090.0
211 5107.5 5103.7 411 961.3 944.0
231 4786.9 4782.2 431 803.9 790.0
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ϵ�KK ¼ 198 912.6 eV, whereas our calculations yield the value
of 198 568.3 eV, which is 344 eV less. Niskanen et al. (2011)
did not take into account QED corrections due to the electron
self-energy and the vacuum polarization. If these effects are
neglected in our calculations, then a value of 198 977.8 eV is
obtained; this value differs by only 65 eV from the result of
Niskanen et al. (2011). The uncertainty in two-hole excitation
energies of heavy atoms is thus found to be about 60 eV,
which is higher than the 0ν2EC target of 10 eV.
The 0ν2EC half-lives are estimated in Secs. V and VIII by

neglecting the mixing. The two-hole excitation energies of
atoms with arbitrary Z are determined using the data for Ne
and Ar (Table III) and also Kr, Xe, and Rn by means of
interpolation ϵ�αβ ¼ aZb between the neighboring noble gas
atoms with the same vacancies.

C. Summary

The probability of capture of orbital electrons by the
nucleus depends on the value of the electron wave functions
inside the nucleus. The values of upper and lower components
of the Dirac electron wave functions of neutral atoms inside
the nuclei were tabulated by Band and Trzhaskovskaya
(1986), who accounted for the electron screening using the
relativistic Dirac-Fock-Slater and Dirac-Fock potentials. The
ns1=2 waves are dominant. The np1=2 waves can be found to
be enhanced compared to the np3=2 waves. The nonrelativistic
solutions of the np3=2 waves are close to the relativistic ones;
see also Grant (2007), Fig. 1.2. The electron capture from the
np3=2 orbits is therefore suppressed. The results of Band and
Trzhaskovskaya (1986) are in excellent agreement with the
results provided by the GRASP2K software package.

The resonant enhancement of the 0ν2EC decays occurs
when the excitation energies of the parent and intermediate
daughter atoms are degenerate with an accuracy of about
10 eV. This scale characterizes the typical excitation width of
the atomic shells. Accuracy of about 10 eV is achievable on
Penning traps when measuring mass difference of ionized
atoms. To identify the resonant 0ν2EC with the same high
accuracy, information about double-hole excitations of elec-
tron shells is required.
The two-hole interactions provide a dominant contribution

to the energy of excited electron shells, but not the only
contribution. Open vacancies in the occupation numbers affect
the energy of all atomic levels. The GRASP2K package
calculates the structure of electron shells based on the
Green’s function method of QED, which offers a simple
and clear description of various approximations.
Accuracy of up to 10 eV is readily achievable when

determining theoretically single-hole excitation energies.
We demonstrated independence on the gauge of single-hole
excitation energies of the order of α2Ry. One of the challenges
of the atomic theory is the proof of gauge invariance of QED
of multielectron atoms in all orders of perturbation theory.
Double-hole excitation energies can be determined theoreti-
cally with an accuracy of 60 eVor better. The upper bound of
the possible error is still higher than that required to identify
the resonant 0ν2EC unambiguously. In calculations with
atomic shell structure, the uncertainties are associated with
complexity of the bound-state problem for multielectron
atoms. In many cases, the resonant parameter of 0ν2EC
can be extracted from the experimental data on Auger
spectroscopy. When normalization to the experimental values
is not possible, quantum chemistry codes such as GRASP2K
can be used to get the missing information.

TABLE III. Double-electron ionization potentials for the noble gas atoms Ne and Ar in eV. Column 2 lists the total angular momentum of the
pair. Column 3 presents the sum of excitation energies of the single-hole states. The values of ϵ�α and ϵ�β are from Larkins (1977). Column 4
reports the double-electron ionization potentials extracted from the Auger-electron spectroscopy data from Larkins (1977). The Auger
transitions allow for the determination of the excitation energies of two-hole states with nα; nβ ≥ 2. Column 5 presents the results of our
calculations using the GRASP2K package. The principal quantum number n, the total angular momentum j, and the orbital momentum l of
electron holes α and β are reported in the last columns. Column 6 presents the mixing matrix of the two-hole states, which gives the energy
eigenstates with definite J. The energy levels in columns 3 and 4 neglect mixing and are ordered in the coincidence with column 5, i.e., for a
unit-mixing matrix.

Element J ϵ�α þ ϵ�β ϵAαβ ϵ�αβ Uð·jαβÞ ðn2jlÞαðn2jlÞβ
Ne 0 1740.2 1862.1 1.000 110 110
Ar 0 6412.0 6653.5 1.000 110 110

0 3532.3 3588.7 1.000 110 210
1 3532.3 3579.8 1.000 110 210
0 3456.7 3513.3 1.000 110 211
1 3456.7 3522.0 0.669 0.743 110 211

3454.6 3511.9 0.743 −0.669 110 231
2 3454.6 3510.1 1.000 110 231
0 652.6 695.4 695.0 1.000 210 210
0 577.0 606.7 607.6 1.000 210 211
1 577.0 630.0 631.2 0.612 0.791 210 211

574.9 605.9 606.8 0.791 −0.612 210 231
2 574.9 604.6 605.3 1.000 210 231
0 501.4 553.8 557.0 0.669 0.743 211 211

497.2 539.3 538.5 0.743 −0.669 231 231
1 499.3 538.9 538.0 1.000 211 231
2 499.3 545.8 545.1 0.881 −0.474 211 231

497.2 537.4 536.3 0.474 0.881 231 231
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V. NUCLEAR MATRIX ELEMENTS

In this section we describe how nuclear structure affects
the half-life of the 0ν2EC process and review the available
calculations of the related NMEs. We also add new NME
calculations to complement the list of the evaluated
0ν2EC cases.

A. Overview of the calculated nuclear matrix elements in 0ν2EC

Nuclear structure is heavily involved in the decay ampli-
tude (3.21) through the appropriate NMEs (Suhonen, 2012a).
These NMEs have been computed in various theory
frameworks as described next. A representative list of the
calculations is displayed in Table IV. In the table the available
estimated lowest and highest limits for the near-resonant
0ν2EC half-lives (last two columns) are listed. In the

evaluation of the half-lives Eq. (8.1) was adopted and the
NMEs M0ν from column 4 of Table IV were used, in addition
to the degeneracy parameters taken from Tables VI and VII.
The theory frameworks used to derive these NMEs are also
given (column 5), along with the corresponding reference
(column 6). The Q2EC-value measurements for the evaluation
of the degeneracy parameters were performed using modern
Penning-trap techniques; see Sec. VI.
In practically all the listed cases the decay rates are

suppressed by the rather sizable magnitude of the ratio
ðΔ=ΓαβÞ2, where Γαβ ∼ 10 eV is the typical deexcitation width
of the excited electron shells with the electron vacancies α
and β. Decays to 0þ states are favored over the decays to 2þ

or 1−; 2−; 3−, etc., states due to the involved nuclear wave
functions and/or higher-order transitions. A further suppres-
sion stems from nuclear deformation. This suppression is

TABLE IV. The “sQRPA” and “dQRPA” entries in column 5 denote the spherical pnQRPA and deformed QRPA outlined at the beginning of
Sec. V.B.1 and in Sec. V.B.2, respectively. Furthermore, the symbol “IBM-2” denotes the microscopic interacting boson model of Sec. V.B.3
and the symbol “EDF” denotes the energy-density functional method of Sec. V.B.4. In the case of the multiple-commutator model (MCM of
Sec. V.B.1) we have chosen to quote the results obtained by the use of the UCOM short-range correlations (UCOM s.r.c.), which are the most
realistic ones (Kortelainen et al., 2007). The UCOM s.r.c. have also been used in the sQRPA, dQRPA, and EDF calculations. The “qp estimate”
in the fifth column denotes the procedure outlined in Sec. V.C. The last two columns give the minimum and maximum half-lives (in years)
calculated using Eq. (8.1) with KZ of Eq. (3.19), mββ ¼ 100 meV, and gA ¼ 1.27. The excitation energies are given in keV.

Transition Jπf M�
A;Z−2 −MA;Z−2 M0ν Model Reference Tmin

1=2 Tmax
1=2

74
34Se →

74
32Ge

�� 2þ2 1204.205� 0.007 3.22 × 10−4 MCM Kolhinen et al. (2010) 1.2 × 1046 1.2 × 1046

96
44Ru → 96

42Mo�� ð0þÞ 2712.68� 0.10 5.57 MCM Suhonen (2012b) 2.2 × 1032 6.8 × 1032

106
48 Cd → 106

44 Pd
�� ð0þÞ 2717.59� 0.21 3.38–3.48 MCM Suhonen (2011) 5.3 × 1031 7.0 × 1031

112
50 Sn → 112

48 Cd
�� ð0þÞ 2988� 8 4.76 Estimate Rahaman et al. (2009) 3.5 × 1035 3.8 × 1035

124
54 Xe →

124
52 Te

�� 0þ4 2153.29� 0.03 1.11–1.30 MCM Suhonen (2013) 7.3 × 1035 7.3 × 1035

0.297 IBM-2 Kotila, Barea, and
Iachello (2014)

1.2 × 1037 1.2 × 1037

136
58 Ce →

136
56 Ba

�� 0þ4 2315.32� 0.07 0.68 MCM Kolhinen et al. (2011) 3.3 × 1032 4.3 × 1032

152
64 Gd → 152

62 Sm
� 0þ1 0 7.21–7.59 sQRPA Šimkovic, Krivoruchenko,

and Faessler (2011)
6.8 × 1027 6.8 × 1028

2.67–3.23 dQRPA Fang et al. (2012) 4.3 × 1028 4.3 × 1029

2.445 IBM-2 Kotila, Barea, and
Iachello (2014)

6.0 × 1028 6.0 × 1029

0.89–1.07 EDF Rodríguez and Martínez-
Pinedo (2010)

3.8 × 1029 3.8 × 1030

156
66 Dy → 156

64 Gd
�� 0þ1 0 3.175 IBM-2 Kotila, Barea, and

Iachello (2014)
7.3 × 1034 7.3 × 1034

0þ2 1049.487� 0.002 1.749 IBM-2 Kotila, Barea, and
Iachello (2014)

4.8 × 1034 4.8 × 1034

0þ3 1168.186� 0.007 0.466 IBM-2 Kotila, Barea, and
Iachello (2014)

5.0 × 1035 5.0 × 1035

0þ4 1715.192� 0.005 0.311 IBM-2 Kotila, Barea, and
Iachello (2014)

7.5 × 1034 7.5 × 1034

0þ5 1851.239� 0.007 0.346 IBM-2 Kotila, Barea, and
Iachello (2014)

4.8 × 1033 4.8 × 1033

0þ6 1988.5� 0.2 0.3 Estimate This work 1.1 × 1028 9.5 × 1032

164
68 Er →

164
66 Dy

�� 0þ1 0 5.94–6.12 sQRPA Šimkovic, Krivoruchenko,
and Faessler (2011)

3.3 × 1031 3.5 × 1031

2.27–2.64 dQRPA Fang et al. (2012) 2.0 × 1032 2.1 × 1032

(Table continued)
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typically a few tens of percent (Ejiri, Suhonen, and Zuber,
2019) but can be even stronger, factor of 2 to 3, for large
deformations (Delion and Suhonen, 2017). The radial
wave functions of electrons in low-lying atomic states on
the surface of medium-heavy nuclei are from Band and
Trzhaskovskaya (1986). In relativistic theory, the electron
capture from the ns1=2 states is dominant, the amplitude of
electron capture from the np1=2 states is suppressed by about
an order of magnitude, and the amplitude of electron capture
from the j ≥ 3=2 state appears to be suppressed by several
orders of magnitude (Kolhinen et al., 2010; Krivoruchenko
et al., 2011).
There are some favorable values of degeneracy parameters

listed in Table VII, as for the transitions 106Cd →
106Pd½ð2; 3Þ−� and 156Dy → 156Gdð1−; 2þÞ, but the associated
nuclear matrix elements have not yet been evaluated. At the
moment the most favorable case with a half-life estimate of
≳5 × 1028 yr is the case 152Gd → 152Smð0þgsÞ, which corre-
sponds to a decay transition to the ground state.
All the presently identified favorable 0ν2EC cases are in the

regions of relatively strong nuclear deformation so that a

proper handling of this degree of freedom poses a challenge to
the nuclear-theory frameworks.

B. Overview of the calculation frameworks

In the analyses of the near-resonant 0ν2EC decay transi-
tions the adopted many-body frameworks include the
quasiparticle random-phase approximation (QRPA) and its
higher-QRPA versions: multiple-commutator model (MCM),
the deformed QRPA, the microscopic interacting boson
model (IBM-2), and the energy-density functional (EDF)
method. The MCM and deformed QRPA frameworks com-
pute the 0ν2EC-decay NME explicitly, including the contri-
butions from the virtual states of the intermediate nucleus.
The other two models, IBM-2 and EDF, resort to the closure
approximation where the sum over the intermediate states,
with the appropriate energy denominator, has been suppressed
by assuming an average excitation energy in the denominator
and then using the closure over the complete set of inter-
mediate virtual states. All these models are briefly
described later.

TABLE IV. (Continued)

Transition Jπf M�
A;Z−2 −MA;Z−2 M0ν Model Reference Tmin

1=2 Tmax
1=2

3.952 IBM-2 Kotila, Barea, and
Iachello (2014)

7.8 × 1031 8.0 × 1031

0.50–0.64 EDF Rodríguez and Martínez-
Pinedo (2010)

3.8 × 1033 4.0 × 1033

180
74 W → 180

72 Hf
�� 0þ1 0 5.56–5.79 sQRPA Šimkovic, Krivoruchenko,

and Faessler (2011)
1.4 × 1029 1.8 × 1029

1.79–2.05 dQRPA Fang et al. (2012) 1.2 × 1030 1.6 × 1030

4.672 IBM-2 Kotila, Barea, and
Iachello (2014)

2.1 × 1029 2.8 × 1029

0.38–0.58 EDF Rodríguez and Martínez-
Pinedo (2010)

2.0 × 1031 2.5 × 1031

184
76 Os →

184
74 W

�� 0þ2 1002.48� 0.04 0.631 EDF Smorra et al. (2012) 6.8 × 1033 6.8 × 1033

ð0Þþ3 1322.152� 0.022 0.504 EDF Smorra et al. (2012) 6.0 × 1030 1.2 × 1031

2þ5 1431.02� 0.05 0.14 MCM This work 4.5 × 1032 4.5 × 1037

ð0Þþ5 1713.47� 0.10 0.163 EDF Smorra et al. (2012) 1.7 × 1035 1.7 × 1035

190
76 Pt →

190
74 Os

�� 1þ 1326.9� 0.5 1.1 MCM This work 3.3 × 1026 1.6 × 1030

ð03Þþ 1382.4� 0.2 4.7 MCM This work 1.0 × 1030 6.5 × 1030

148
64 Gd → 148

62 Sm
�� ð0þÞ 3004� 3 0.071 qp estimate This work 5.3 × 1028 1.5 × 1035

ð1þÞ 0.031 qp estimate This work 8.3 × 1028 2.5 × 1035

150
64 Gd → 150

62 Sm
�� 0þ 1255.400� 0.022 0.066 qp estimate This work 4.0 × 1029 1.6 × 1036

154
66 Dy → 154

64 Gd
�� ð0þÞ 3153.1 0.068 qp estimate This work 6.8 × 1034 2.8 × 1035

ð0þÞ 3154.8� 0.4 0.068 qp estimate This work 6.3 × 1034 2.8 × 1035

ð1þÞ 3264.42� 0.21 0.030 qp estimate This work 7.5 × 1028 3.8 × 1035

194
80 Hg → 194

78 Pt
�� ð0þÞ 2450� 5 0.017 qp estimate This work 2.5 × 1029 1.2 × 1036

ð1þÞ 0.004 qp estimate This work 1.4 × 1030 6.3 × 1036

ð0þÞ 2472� 5 0.017 qp estimate This work 2.5 × 1029 1.2 × 1036

ð1þÞ 0.004 qp estimate This work 1.4 × 1030 2.8 × 1036

ð1þÞ 2500� 10 0.004 qp estimate This work 1.4 × 1030 6.5 × 1036

202
82 Pb → 202

78 Hg
�� 0þ2 1411.37� 0.12 0.011 qp estimate This work 1.7 × 1030 1.6 × 1037

ð1þÞ 1347.92� 0.07 0.003 qp estimate This work 4.0 × 1033 4.8 × 1036
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The NME for the near-resonant 0ν2EC decay to the 0þ final
states is written as a linear combination of the Gamow-Teller
(GT), Fermi (F), and tensor (T) NMEs as

M2EC ¼ M2EC
GT −

�
gV
gA

�
2

M2EC
F þM2EC

T : ð5:1Þ

In the MCM and deformed QRPA frameworks the transitions
through the virtual states of the intermediate nucleus are
treated explicitly. Then the double Fermi, Gamow-Teller, and
tensor nuclear matrix elements can be written as

M2EC
F ¼

X
k

�
Jþf

				X
mn

hFðrmn; EkÞ
				0þi

�
; ð5:2Þ

M2EC
GT ¼

X
k

�
Jþf

				X
mn

hGTðrmn; EkÞðσm · σnÞ
				0þi

�
; ð5:3Þ

M2EC
T ¼

X
k

�
Jþf

				X
mn

hTðrmn; EkÞSTmn

				0þi
�
; ð5:4Þ

where the tensor operator reads

STmn ¼ 3½ðσm · r̂mnÞðσn · r̂mnÞ� − σm · σn: ð5:5Þ

The summations over k in Eqs. (5.2)–(5.4) run over all the
states of the intermediate odd-odd nucleus, rmn ¼ jrm − rnj is
the relative distance between the two decaying protons,
labeled m and n, and r̂mn ¼ ðrm − rnÞ=rmn. The neutrino
potentials hKðrmn; EkÞ, K ¼ F, GT, T were given by Suhonen
(2012a). The ground state of the initial even-even nucleus is
denoted by 0þi and the positive-parity final state in the
daughter even-even nucleus is denoted by Jþf . In the closure
approximation the intermediate energies Ek in Eqs. (5.2)–(5.4)
are replaced by a single energy E and the summation over k is
replaced by a unit operator.
In general, for the near-resonant 0ν2EC decay to the final

Jþf ¼ 0þ; 1þ; 2þ states the NMEs can be written in the QRPA
framework in the form

M2EC
K ð0þi → Jþf Þ ¼ ð−1ÞJf

X
Jπ ;k1;k2

X
J1;J0;J00

X
pp0nn0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½J0�½J00�½J1�

½Jf�

s 8<
:

jn jp J

jn0 jp0 J1
J00 J0 Jf

9=
;ðnn0∶J00kOðJfÞ

K kpp0∶J0Þ

× ðJþf k½c†n0 c̃p0 �J1kJπk1ÞhJπk1 jJπk2iðJπk2k½c
†
nc̃p�Jk0þi Þ; ð5:6Þ

where ½x� ¼ 2xþ 1 and k1 and k2 label the different
QRPA solutions for a given multipole Jπ , stemming from
the parent and daughter nuclei of the near-resonant
0ν2EC decay. The operators O

ð0fÞ
K for the 0þ final states

in the reduced two-particle matrix element denote the
Fermi (K ¼ F), Gamow-Teller (K ¼ GT), and tensor
(K ¼ T) parts of the double-beta operator, given in
Eqs. (5.2)–(5.4). In all discussed theory frameworks
the two-particle matrix element also contains the appro-
priate short-range correlations, higher-order nucleonic
weak currents, and nucleon form factors, as given by
Šimkovic et al. (1999). The last line of Eq. (5.6) contains
the one-body transition densities between the initial (0þi )
and final (0þf ) ground states and the intermediate states
Jπk , and they can be obtained in the QRPA framework as
discussed later. The term between the one-body transition
densities is the overlap between the two sets of inter-
mediate states emerging from the two QRPA calculations
based on the parent and daughter even-even ground states
and its expression for the spherical nuclei was given by
Suhonen (2012a) and for deformed nuclei by Šimkovic,
Pacearescu, and Faessler (2004).
Here we note that typically only the Jþf ¼ 0þ final states

have been considered in the near-resonant 0ν2EC-decay
calculations, as given by Eqs. (5.2)–(5.4) and the Jf ¼ 0

special case of Eq. (5.6). The simplest procedure to reach
the positive-parity Jþf ¼ 1þ; 2þ states is to use a generalized
GT-type operator

M2EC
GT ðJþf ¼ 1þ; 2þÞ

¼
X
k

�
Jþf

				X
mn

hGTðrmn; EkÞ½σmσn�Jf
				0þi

�
; ð5:7Þ

together with Eq. (5.6). In Sec. V.C we compute this NME for
several cases of interest in an approximate way, avoiding the
vast complications involved in the use of detailed nuclear
wave functions for high-excited states in heavy daughter
nuclei of the near-resonant 0ν2EC processes. Furthermore, to
reach the negative-parity states J−f ¼ 0−; 1−; 2− one would
need more complex nuclear transition operators, and these
have not yet been thoroughly examined (Vergados, 2011). In
this review we then skip the estimation of the order of
magnitude of the related NMEs.
Here we remark that Cirigliano et al. (2018b, 2019) found

that in addition to the long-range NME (5.1) there is a notable
contribution from a short-range operator affecting the Fermi
part of the NME. According to preliminary studies in these
works for extremely light nuclei the value of the NME of the
neutrinoless double-beta decay could be changed consider-
ably by the inclusion of the new short-range term. It remains to
be seen how strong the effect is for the medium-heavy and
heavy nuclei that actually double beta decay.

1. Multiple-commutator model

The nuclear states of odd-odd nuclei can be described within
the spherical proton-neutron quasiparticle random-phase
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approximation (pnQRPA) framework. The solution of the
pnQRPA equations can be written as [see Suhonen (2007)]

jωMi ¼ q†ðω;MÞjQRPAi
¼
X
pn

ðXω
pn½a†pa†n�JM − Yω

pn½a†pa†n�†JMÞjQRPAi; ð5:8Þ

where the shorthand ω ¼ Jπk for the kth intermediate state of
spin parity Jπ is used. Here jQRPAi is the QRPA ground state
and the operator a†p creates a proton quasiparticle on the single-
particle orbital p ¼ ðnp; lp; jpÞ, where n is the principal, l is
the orbital angular momentum, and j is the total angular-
momentum quantum number. The operator ap is the corre-
sponding annihilation operator and a similar definition applies
for the neutrons n. The single-particle orbitals are obtained by
solving the Schrödinger equation for a spherical Woods-Saxon
mean-field potential (Suhonen, 2007). By using this wave
function one can obtain the transition densities

ð0þgsk½c†n0 c̃p0 �JkJπk1Þ ¼
ffiffiffiffiffiffi
½J�

p
½vn0up0XJπk1

p0n0 þ un0vp0YJπk1
p0n0 �; ð5:9Þ

ðJπk2k½c
†
nc̃p�Jk0þi Þ ¼

ffiffiffiffiffiffi
½J�

p
½ũnṽpX̃Jπk2

pn þ ṽnũpỸ
Jπk2
pn �; ð5:10Þ

where v (ṽ) and u (ũ) correspond to the BCS occupation
and vacancy amplitudes of the final (initial) even-even nucleus.
The amplitudes X and Y (X̃ and Ỹ) come from the pnQRPA
calculation startingwith the final (initial) nucleus of the double-
beta decay. Here the initial and final states of the near-resonant
0ν2EC decay are assumed to be the ground states of the even-
even mother and daughter nuclei.
The nth excited ωf ¼ Iπn state, where I is the angular

momentum of the state, in the even-even daughter nucleus is
described in the QRPA formalism, and the corresponding
wave function can be presented as [see Suhonen (2007)]

jIπnMIi¼Q†ðIπn;MIÞjQRPAi
¼
X
a≤b

½Xωf

abA
†
abðIMIÞ−Y

ωf

abÃabðIMIÞ�jQRPAi; ð5:11Þ

where the normalized two-quasiparticle operators are
defined as

A†
abðIMIÞ ¼ N abðIÞ½a†aa†b�IMI

; ð5:12Þ

N abðIÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δabð−1ÞI

p
1þ δab

ð5:13Þ

for any state of angular momentum I in the even-even nucleus.
We denote here ÃabðIMIÞ≡ ð−1ÞIþMIAabðI;−MIÞ. Here a
and b denote the quantum numbers of a single-particle orbital
in a spherical nuclear mean field, including the number of
nodes n (principal quantum number) and the orbital (l) and
total (j) angular momenta. We note that the summation over
a ≤ b guarantees that there is no double counting of two-
quasiparticle configurations and that this along with the
normalized operators (5.12) guarantees that the wave function
will be properly normalized with the normalization condition
(Suhonen, 2007)

X
a≤b

ðjXωf

ab j2 − jYωf

ab j2Þ ¼ 1: ð5:14Þ

The creation operator Q†ðIπn;MIÞ of Eq. (5.11) is usually
called the creation operator for a QRPA phonon.
For calculational convenience it is preferable to go from the

restricted sum of Eq. (5.11) to a nonrestricted (free) one by
introducing the correspondence

jIπnMIi¼ Q̄†ðIπn;MIÞjQRPAi
¼
X
ab

½X̄ωf

abĀ
†
abðIMIÞ− Ȳ

ωf

ab
˜̄AabðIMIÞ�jQRPAi; ð5:15Þ

where the barred two-quasiparticle operators are those in
Eq. (5.12) without the normalizer N abðIÞ. Then the normali-
zation condition becomes

X
ab

ðjX̄ωf

ab j2 − jȲωf

ab j2Þ ¼
1

2
: ð5:16Þ

At the same time the two kinds of X and Y amplitudes are
related by

X̄
ωf

ab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þδab

p
2

X
ωf

ab ; Ȳ
ωf

ab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þδab

p
2

Y
ωf

ab ; a≤ b; ð5:17Þ

for any ωf ¼ Iπn. The barred amplitudes are symmetrized ones
and possess convenient symmetry relations to generate
amplitudes with a > b:

X̄
ωf

ba ¼ð−1ÞjaþjbþJþ1X̄
ωf

ab ; Ȳ
ωf

ba ¼ð−1ÞjaþjbþJþ1Ȳ
ωf

ab : ð5:18Þ

In the MCM, originally introduced by Suhonen (1993), the
one-body transition densities corresponding to a transition
from the intermediate jωMi state (5.8) of the odd-odd nucleus
to the final one-phonon state (5.15) of the even-even daughter
nucleus are calculated by first writing the transition densities
as ground-state-averaged multiple commutators and then
applying the quasiboson approximation (Suhonen, 2007) by
replacing the QRPA vacuum with the BCS vacuum when
taking the ground-state average. The averaged multiple
commutators then become

hωfMIjβþLμðnpÞjωMi
≈ hBCSj½½Q̄ðωf;MIÞ; βþLμðnpÞ�; q†ðω;MÞ�jBCSi; ð5:19Þ

where jBCSi is the BCS ground state and we denote the βþ

type of EC operator by

βþLμðnpÞ≡ ½c†nc̃p�Lμ; ð5:20Þ

with c†n creating a neutron on orbital n and c̃p annihilating
a proton on orbital p. Using the Wigner-Eckart theorem
(Suhonen, 2007) one can convert Eq. (5.19) to the reduced
transition density
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ðωfk½c†nc̃p�LkωÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½I�½L�½J�

p
ð−1ÞIþL ×

X
n0
ð−1Þjpþjn0 ðX̄ωf

n0nX
ω
n0punup − Ȳ

ωf

n0nY
ω
n0pvnvpÞ

�
J L I

jn jn0 jp

�

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½I�½L�½J�

p
ð−1ÞIþJ ×

X
p0

ð−1Þjnþjpð−X̄ωf

p0pX
ω
np0vnvp þ Ȳ

ωf

p0pY
ω
np0unupÞ

�
J L I

jp jp0 jn

�
; ð5:21Þ

where the v and u factors are the occupation and vacancy
amplitudes of the BCS ground state (Suhonen, 2007). The
transition density (5.21) can be used to compute the
connection of the near-resonant 0ν2EC intermediate states
to the final resonant excited state ωf of Eq. (5.15).
The MCM method has close connection with the boson-

expansion method described by Raduta, Faessler, and Stoica
(1991), Raduta et al. (1991), and Raduta and Suhonen (1996).

2. Deformed quasiparticle random-phase approximation

The near-resonant 0ν2EC NMEs for axially symmetric
well-deformed nuclei can be calculated in the adiabatic Bohr-
Mottelson approximation in the intrinsic coordinate system of
a rotating nucleus. The nuclear excitations are characterized
by the parity π and the quantum number K that is associated
with the projection of the total angular momentum J of the
nucleus onto the intrinsic symmetry axis. Then the kth
intrinsic state of projection parity Kπ, jKπ; ki, can be gen-
erated by the deformed QRPA approach (Fang et al., 2011) in
a way analogous to Eq. (5.8):

jKπki ¼ q†ðKπ; kÞj0þgsi
¼
X
pn

ðXk
pn;Ka

†
pa

†
n̄ − Yk

pn;Kap̄anÞj0þgsi; ð5:22Þ

where for the quasiparticle operators ap̄ (an̄) p̄ (n̄) denotes the
time-reversed proton (neutron) orbital. The quasiparticle pairs
in Eq. (5.22) obey the selection rules Ωp − Ωn ¼ K and
πpπn ¼ π, where the involved parities are those of the single-
particle orbitals and Ω denotes the projection of the total
single-particle angular momentum j on the intrinsic symmetry
axis. The state j0þgsi denotes the vacuum of the deformed
QRPA. The single-particle states are obtained by solving the
Schrödinger equation for a deformed axially symmetric
Woods-Saxon mean-field potential (Yousef et al., 2009). In
the deformed QRPA approach the deformed calculation is
transformed to a spherical QRPA framework by first decom-
posing the deformed Woods-Saxon wave functions into
deformed harmonic-oscillator (HO) wave functions. These,
in turn, are decomposed into spherical HO wave functions
(Yousef et al., 2009). This also enables the use of realistic one-
boson-exchange nucleon-nucleon potentials in the many-body
calculations (Yousef et al., 2009).
The one-body transition densities (5.9) and (5.10) of the

spherical QRPA are now replaced by the corresponding
transition densities of the deformed QRPA

h0þgsjc†n0 c̃p0 jKπk1i¼ vn0up0Xk1
p0n0;Kπ þun0vp0Yk1

p0n0;Kπ ; ð5:23Þ

hKπk2jc†nc̃pj0þi i ¼ ũnṽpX̃
k2
pn;Kπ þ ṽnũpỸ

k2
pn;Kπ : ð5:24Þ

These transition densities are the ones used to compute the
near-resonant 0ν2EC NMEs of the decays of 152Gd, 164Er, and
180W in Fang et al. (2012).

3. Microscopic interacting boson model

The interacting boson model (IBM) is a theory framework
based on s and d bosons that correspond to collective nucleon
pairs coupled to angular momenta and parities 0þ and 2þ,
respectively. An extension of the IBM is the microscopic IBM
(IBM-2) where the protons and neutrons form separate proton
and neutron bosons. The IBM-2 is in a way a phenomeno-
logical version of the nuclear shell model, containing the
seniority aspect and the restriction to one magic shell in terms
of the single-particle model space. The Hamiltonian and the
transition operators are constructed from the s and d bosons as
lowest-order boson expansions with coupling coefficients to
be determined by fits to experimental data on low-lying
energy levels and E2 γ transitions associated with the s
and d bosons, but the fitting does not use the spin or isovector
data available from the β decays. One can also relate the
bosons to the underlying fermion model space through a
mapping procedure (Otsuka, Arima, and Iachello, 1978;
Otsuka, 1996).
The microscopic IBM can be extended to include higher-

multipole bosons, like g bosons, as well. Further extension
concerns the description of odd-A nuclei using the micro-
scopic interacting boson-fermion model (IBFM-2) (Iachello
and Van Isacker, 1991). The IBM concept can also be used to
describe odd-odd nuclei by using the interacting boson-
fermion-fermion model (IBFFM) and its proton-neutron
variant, the proton-neutron IBFFM (IBFFM-2) (Brant and
Paar, 1988). Here problems arise from the interactions
between the bosons and the one or two extra fermions in
the Hamiltonian, and from the transition operators containing
a large number of phenomenological parameters to be
determined in some meaningful way. While IBM-2 has often
been used to calculate the 0ν2β properties of nuclei, the
IBFFM-2 has not. IBM-2 calculations have to be done using
the closure approximation since it does not contain the spin-
isospin degree of freedom needed to access the intermediate
odd-odd nucleus of the 0ν2β decay, particularly in the context
of the near-resonant 0ν2EC decays.

4. Energy-density functional method

The EDF method is a mean-field-based method that uses
closure approximation to compute the near-resonant 0ν2EC
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NMEs, and thus is well suited for 0ν2EC transitions between
two ground states, as in the cases of the near-resonant 0ν2EC
decays of 152Gd, 164Er, and 180W treated by Rodríguez and
Martínez-Pinedo (2012). In this theory framework (Rodríguez
and Martínez-Pinedo, 2010) density functionals based on the
Gogny D1S functional (Berger, Girod, and Gogny, 1984) and
D1M functional (Goriely et al., 2009) in large single-
particle bases (11 major oscillator shells) are used. Both
the particle-number and angular-momentum projections are
performed before the variation for the mother and daughter
nuclei, and configuration mixing is taken into account using
the generator coordinate method (Ring and Schuck, 1980).
Hence, in the EDF the initial and final ground states can be
written as

j0þgsi ¼
X
β2

gβ2P
J¼0PNPZjΦβ2i; ð5:25Þ

where PN (PZ) is the projection operator for a given neutron
(proton) number and PJ¼0 is the projection operator for zero
total angular momentum. The intrinsic axially symmetric
Hartree-Fock-Bogoliubov wave functions jΦβ2i are solutions
to the variation equations after particle-number-projection
constrained to a given value of the axial quadrupole defor-
mation β2. The shape-mixing coefficients gβ2 are found
by solving the Hill-Wheeler-Griffin equation (Ring and
Schuck, 1980).

C. Decays of nuclides with the calculated nuclear
matrix elements

The order of magnitude of the NME (5.7) can be
estimated by constructing a generic single-quasiparticle-type
NME (qp-NME) describing the conversion of a proton pair
to a neutron pair at the nuclear proton and neutron Fermi
surfaces. This NME picks the essential features of the
transition since most action is concentrated at the Fermi
surfaces. The detailed quasiparticle properties at the Fermi
surfaces can be obtained from a BCS calculation using the
Woods-Saxon mean-field single-particle energies (Bohr and
Mottelson, 1969). In this simple estimation the collective
effects are not taken into account. These collective effects
can be important for 0ν2EC transitions to the lowest-lying
0þ or 2þ states. However, for the Jf ¼ 0þ; 2þ states at
energies satisfying the resonance condition of the near-
resonant 0ν2EC decay the collective effects are not as
important. In fact, at these energies the many-body wave
functions can vary strongly from one state to the next,
sometimes causing coherent enhancements or incoherent
cancellations. A qp-NME is a kind of average between these
two extremes and thus suitable for the role of a generic
NME in this case.
A plausible simplification of the NME (5.6) is to consider

the conversion of an angular-momentum-zero-coupled proton
pair to an angular-momentum-Jf-coupled neutron pair at the
nuclear Fermi surface. The zero-coupled proton pairs are
the most important contributors to the NMEs of the ordinary
0ν2β decay (Hyvärinen and Suhonen, 2015), so this is a good
simplifying approximation. Considering the 1þ type of

intermediate states the typical ones and taking J1 ¼ 1 for
simplicity leads to the following simplified expression for
the NME (5.6):

M2EC
K ð0þi → Jþf Þ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

½Jf�½jp�

s
ð−1Þjpþjnþ1

�
1 jn jp
jn 1 Jf

�

× ðnn∶Jfkhðr12Þ½σ1σ2�Jfkpp∶0Þ
× ðJþf k½c†nc̃p�1k1þÞð1þk½c†nc̃p�1k0þi Þ;

ð5:26Þ

where the neutrino potential can be simplified to a Coulomb-
type potential

hðr12Þ ¼
2RA

π

1

r12
ð5:27Þ

by taking only the leading contribution (Hyvärinen and
Suhonen, 2015) to the potential and approximating the
difference of the intermediate energy and the average of
the parent and daughter masses as zero, which is a rather
good approximation for the ground state of the intermediate
nucleus. Here RA ¼ 1.2A1=3 fm is the nuclear radius for the
nucleus of mass A. To proceed further one has to convert
the two-body NME to the center of mass and relative
coordinates for the computation of the associated radial
integral of the simplified neutrino potential (5.27). This can
be achieved by the use of the Moshinsky brackets Mλ, first
introduced by Moshinsky (1959); see Suhonen (2012a) for
more details.
Implementing the Moshinsky brackets and working out the

angular-momentum algebra result in a rather simple compact
expression for the two-body NME in Eq. (5.26):

ðnn∶Jfkhðr12Þ½σ1σ2�Jfkpp∶0Þ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Jf�½jp�

q
½jn�

X
S¼0;1

Gpn
Jf
ðSÞ

×
X

nn0lNL

MSðn0lNL;nnlnnnlnÞ

×MSðnlNL;nplpnplpÞIn0nl;
ð5:28Þ

where nn and ln are the principal and orbital angular-
momentum quantum numbers for the orbital occupied by
the final neutrons and np and lp are the corresponding
quantum numbers for the initial protons. The quantities
MSðn0lNL; nnlnnnlnÞ ¼ hn0l; NL; Sjnnln; nnln; Si are the
Moshinsky brackets and the sum over the quantum numbers
n and n0, l refers to a sum over the principal and orbital
angular-momentum quantum numbers of the relative motion,
and N and L symbolize the principal and orbital angular-
momentum quantum numbers associated with the center-of-
mass coordinate. The sum over S denotes a sum over the
possible total spins. The geometric factor can be simplified to
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Gpn
Jf
ðSÞ¼ ½S�

X
S0

½S0�ð−1ÞS0þJfþlpþjpþ1=2

�lp lp S
1
2

1
2

jp

�

×

8>><
>>:
ln

1
2

jn

ln 1
2

jn
S S0 Jf

9>>=
>>;

8>><
>>:

1
2

1
2

1

1
2

1
2

1

S0 S Jf

9>>=
>>;; ð5:29Þ

and the Coulomb-type integral reads

In0nl ¼
Z

∞

0

gn0lðrÞhðrÞgnlðrÞr2dr; ð5:30Þ

where gnlðrÞ are the radial functions of the three-dimensional
harmonic oscillator and hðrÞ is the simplified neutrino
potential (5.27).
The one-body transition densities involved in Eq. (5.26) can

be obtained from Eqs. (5.10) and (5.21). In the quasiparticle
approximation the Y amplitudes vanish and for the involved
quasiparticle transitions the X factors are set to unity. Then
one finds that

ðJþf k½c†nc̃p�1k1þÞð1þk½c†nc̃p�1k0þi Þ

≈ 3
ffiffiffiffiffiffiffiffiffiffi
6½Jf�

q
ð−1ÞJfþ1

�
1 1 Jf
9
2

9
2

11
2

�
unupũnṽp; ð5:31Þ

where the occupation and vacancy amplitudes are
obtained from BCS calculations in the involved nuclei. The
qp-NMEs calculated by using the simplified formalism of
Eqs. (5.26)–(5.29) are displayed in Table IV. In the A ¼
148–154 region the proton-to-neutron single-quasiparticle
transition is π0h11=2 → ν0h9=2 and for A ¼ 194; 202 the
transition is π0h11=2 → ν0i13=2.

D. Summary

To conclude, Table IV shows that the magnitudes of the
computed 0v2EC NMEs for different theory frameworks can
vary quite strongly for nuclei with A ≥ 152. These nuclei are
deformed and thus rather challenging from the nuclear-
structure point of view. For these nuclei it is preferable to
apply a nuclear-theory framework that naturally contains the
deformation degree of freedom, namely, the IBM-2, dQRPA,
and EDF frameworks. However, as seen in Table IV, the
computed NMEs show that there are significant differences
between the results obtained in the different computational
formalisms. The reason for these differences is not obvious
and is already well recognized in the case of the 0ν2β− NMEs,
as shown in a NME compilation by Engel and Menxéndez
(2017). Since none of these theory frameworks can system-
atically access the uncertainties of the calculations, it is hard to
make a judicious choice between the different NMEs in terms
of reliability. This conclusion is valid for both the 0ν2β− and
0ν2EC decay processes. Only further studies and comparisons
between these theory frameworks could shed light on this
situation and lead to consistent values of the NMEs for
deformed heavy nuclei.
Another conspicuous feature of Table IV is that the nuclear

shell model (NSM), standardly used to compute the 0ν2β−

NMEs, does not contribute to the calculations of the 0ν2EC
NMEs. The reason for this is twofold: on the one hand, for the
nuclei 152Gd, 156Dy, 164Er, and 180W the 2νEC transition is
ground state to ground state and thus accessible, in principle,
to the NSM. These nuclei are heavy highly deformed nuclei
and the NSM simply does not have the necessary single-
particle valence space to treat these decays. On the other hand,
for the lighter, nearly spherical nuclei, the NSM is easier to
install in terms of single-particle spaces, but the fact that the
resonant states in the daughter nuclei are highly excited
excludes a reasonable description of the corresponding wave
functions by the NSM.

VI. STATUS OF EXPERIMENTAL SEARCHES

A. Experimental studies of 2EC processes

The efforts of experimentalists have mainly concentrated on
the search for neutrinoless double-beta decay with emission of
two electrons (2β−) where limits on the half-lives of T1=2 >
1024–1026 yr were obtained.2 The most sensitive 0ν2β−

experiments provide limits on the effective Majorana mass
of the electron neutrino of approximately jmββj < 0.1–0.7 eV.
The uncertainties in mββ are related to the uncertainties
inherent in the nuclear-structure model calculations of
NMEs and the in-medium modifications of the axial-vector
coupling gA.
The sensitivity of the experiments in search for double-beta-

plus processes such as 2EC, electron capture with positron
emission (ECβþ), and double-positron emission (2βþ) is
substantially lower [see Tretyak and Zdesenko (1995) and
Tretyak and Zdesenko (2002) and the references in Table V3].
The most sensitive experiments give limits on double-beta-
plus processes of approximately limT1=2 ∼ 1021–1022 yr (for
36Ar, 40Ca, 58Ni, 64Zn, 78Kr, 96Ru, 106Cd, 112Sn, 120Te, 124Xe,
126Xe, 130Ba, and 132Ba).We note that until recently there were
only indications, even for the allowed two-neutrino double-
electron capture. However, the XENON Collaboration (2019)
claimed to have observed two-neutrino double-electron cap-
ture in 124Xe with a half-life of ð1.8� 0.5Þ × 1022 yr. The
result of the XENON1t data analysis in the region of
interest for 2ν2EC in 124Xe is shown in Fig. 10. Double-
beta decay of 130Ba was measured using the geochemical
method; the half-life is T1=2¼ð2.2�0.5Þ×1021 yr as obtained
by Meshik et al. (2001), and T1=2 ¼ ð6.0� 1.1Þ × 1020 yr
as obtained by Pujol et al. (2009). An indication

2See Tretyak and Zdesenko (1995, 2002), Elliott (2012), Giuliani
and Poves (2012), Saakyan (2013), Cremonesi and Pavan (2014),
Bilenky and Giunti (2015), Gómez-Cadenas and Martín-Albo
(2015), Päs and Rodejohann (2015), Sarazin (2015), Dell’Oro
et al. (2016), Vergados, Ejiri, and Šimkovic (2016), Barabash
(2018), and Dolinski, Poon, and Rodejohann (2019), and the recent
experimental results of Arnold et al. (2015), Gando et al. (2016),
Agostini et al. (2018), Albert et al. (2018), Alduino et al. (2018a),
and Azzolini et al. (2018).

3The energies E� and the values of Jπ of the excited nuclide levels
in Table V were taken from the database of Brookhaven National
Laboratory (http://www.nndc.bnl.gov/ensdf/).
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TABLE V. Experimental half-life limits of neutrinoless 2EC for transitions to the ground state (denoted as “g.s.”) or to the excited level of the
daughter nuclide with possible resonant enhancement. The mass differences between the mother and the daughter atoms Q ¼ MA;Z −MA;Z−2
are from Wang et al. (2017); ι is the isotopic abundance of the nuclide of interest in the natural isotopic compositions of the elements (Meija
et al., 2016). To check the resonance enhancement condition, the degeneracy parameter Δ ¼ Q − E� − ϵ�αβ is shown, where E� ¼ M�

A;Z−2 −
MA;Z−2 is the excitation energy of the daughter nuclide and ϵ�αβ ¼ M��

A;Z−2 −M�
A;Z−2 is the excitation energy of the atomic shell with the electron

vacancies α and β in the K, L,M, or N orbits. The experimental limits of the 54Fe → 54Cr decay are at 68% confidence level (C.L.), and in other
cases at 90% C.L. The deexcitation width of the electron shell of the daughter nuclides Γf ¼ Γα þ Γβ [see Campbell and Papp (2001)] is shown
in column 6 (orbits are indicated in the brackets). The resonance parameter Rf ¼ Γf=ðΔ2 þ Γ2

f=4Þ normalized on the value for the 0ν2EC decay
54Fe → 54Cr (g.s. to g.s.) is given in column 7.

Transition
Q (keV)
ι (%)

Decay channel,
level of daughter
nuclei (keV) Δ (keV)

Expt.
limit (yr)

Experimental
technique
(reference) Γf (eV) Rf

36Ar → 36S
432.59(19)
0.3336(210)

KL, 0þ g.s. 427.65(19) ≥ 3.6 × 1021 HPGe γ spectrometry
(Agostini et al., 2016)

1.04 (KK) 1.2

40Ca → 40Ar
193.51(2)
96.941(156)

2EC, 0þ g.s. 187.10(2) ≥ 1.4 × 1022 CaWO4 scint. bolometer
(Angloher et al., 2016)

1.32 (KK) 8

50Cr → 50Ti
1169.6(5)
4.345(13)

1159.7(5) 1.78 (KK) 0.3

54Fe → 54Cr
680.3(4)
5.845(105)

KK, 0þ g.s. 668.3(4) ≥ 4.4 × 1020 HPGe γ spectrometry
(Bikit et al., 1998)

2.04 (KK) 1

KL, 0þ g.s. ≥ 4.1 × 1020 HPGe γ spectrometry
(Bikit et al., 1998)

LL, 0þ g.s. ≥ 5.0 × 1020 HPGe γ spectrometry
(Bikit et al., 1998)

58Ni → 58Fe
1926.4(3)
68.0769(190)

KL, 0þ g.s. ≥ 4.1 × 1022 HPGe γ spectrometry
(Rukhadze et al.,
2020)

KK, 2þ 1674.731(6) 237.4(3) 2.38 (KK) 9

64Zn → 64Ni
1094.9(7)
49.17(75)

2EC, 0þ g.s. 1075.6(7) ≥ 3.2 × 1020 ZnWO4 scintillator
(Belli, Bernabei et al.,
2011b)

74Se → 74Ge
1209.24(1)
0.86(3)

KK, 0þ g.s. ≥ 4.8 × 1019 HPGe γ spectrometry
(Barabash et al., 2020)

KL, 0þ g.s. ≥ 3.5 × 1019 HPGe γ spectrometry
(Barabash et al., 2020)

≥ 9.6 × 1018 HPGe γ spectrometry
(Lehnert, Wester et al.,
2016)

LL, 0þ g.s. ≥ 6.5 × 1019 HPGe γ spectrometry
(Barabash et al., 2020)

≥ 5.8 × 1018 HPGe γ spectrometry
(Lehnert, Wester et al.,
2016)

LL, 2þ
1204.205(7)

ð2.21 − 2.60Þ � 0.01 ≥ 1.1 × 1019 HPGe γ spectrometry
(Barabash et al., 2020)

7.6 (L1L1) 3.4 × 105

≥ 4.3 × 1019
a HPGe γ spectrometry

(Frekers et al., 2011)
≥ 1.5 × 1019

b HPGe γ spectrometry
(Ješkovský et al.,
2015)

≥ 7.0 × 1018 HPGe γ spectrometry
(Lehnert, Wester et al.,
2016)

78Kr → 78Se KK, 0þ g.s. ≥ 5.5 × 1021 Proportional counter
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TABLE V. (Continued)

Transition
Q (keV)
ι (%)

Decay channel,
level of daughter
nuclei (keV) Δ (keV)

Expt.
limit (yr)

Experimental
technique
(reference) Γf (eV) Rf

2847.67(26) LL, ð2þÞ 2838.49(7) ð5.88 − 6.32Þ � 0.26 ≥ 5.4 × 1021 filled with enriched 7.6 (L1L1) 4.8 × 104

0.355(3) 78Kr (99.8%)
(Gavrilyuk et al.,
2013)

84Sr → 84Kr
1789.8(12)
0.56(2)

KK, 0þ g.s. ≥ 6.0 × 1016 HPGe γ spectrometry
(Belli et al., 2012a)

KL, 0þ g.s. ≥ 1.9 × 1016 HPGe γ spectrometry
(Belli et al., 2012a)

LL, 0þ g.s. ≥ 5.9 × 1016 HPGe γ spectrometry
(Belli et al., 2012a)

KK, 2þ 881.615(3) 879.5(12) 5.4 (KK) 1.5

92Mo → 92Zr
1650.45(19)
14.649(106)

KK, 0þ g.s. ≥ 6.8 × 1019 CaMoO4 scintillator in
coincidence
with HPGe detector
(Kang et al., 2013)

KK, 0þ 1382.77(7) 231.68(19) 7.66 (KK) 31
KK, 4þ 1495.46(5) 118.99(19) 7.66 (KK) 118

96Ru → 96Mo
2714.50(12)
5.54(14)

KK 0þ g.s. ≥ 1.0 × 1021 HPGe γ spectrometry
(Belli et al., 2013b)

KL 0þ g.s. ≥ 2.3 × 1020 HPGe γ spectrometry
(Belli et al., 2013b)

LL 0þ g.s. ≥ 2.3 × 1020 HPGe γ spectrometry
(Belli et al., 2013b)

KL, 2þ 2700.21(6) −ð8.23 − 8.58Þ � 0.13 ≥ 2.0 × 1020 HPGe γ spectrometry
(Belli et al., 2013b)

8.32 (KL1) 2.5 × 104

LL, 2þ 2700.21(6) ð8.56 − 9.25Þ � 0.13 7.6 (L1L1) 2.3 × 104

LL, 2712.68(10) −ð3.22 − 3.91Þ � 0.16 ≥ 3.6 × 1020 HPGe γ spectrometry
(Belli et al., 2013b)

5.63 L1L2 9.0 × 104

102Pd → 102Ru
1203.3(4)
1.02(1)

KK, 2þ 1103.047(13) 56.0(4) 10.7 (KK) 738

106Cd → 106Pd
2775.39(10)
1.245(22)

KK, 0þ g.s. ≥ 1.0 × 1021 Enr. 106CdWO4

scintillator (Belli
et al., 2012b)

KL, 0þ g.s. ≥ 1.3 × 1021 Enr. 106CdWO4

scintillatorc (Belli
et al., 2020)

LL, 0þ g.s. ≥ 1.0 × 1021 Enr. 106CdWO4

scintillator (Belli
et al., 2012b)

KK, 0þ 2624.40(5) 102.29� 0.11 12.5 (KK) 260
KK, ð1Þþ 2705.30(8) 21.39� 0.13 12.5 (KK) 5.9 × 103

KK, 2717.59(21) 9.10� 0.23 ≥ 2.9 × 1021 Enr. 106CdWO4

scintillatorc (Belli
et al., 2020)

12.5 (KK) 3.3 × 104

KL, 4þ 2741.0(5) ð6.4 − 6.9Þ � 0.5 ≥ 9.5 × 1020 Enr. 106CdWO4

scintillator (Belli
et al., 2012b)

10.2 (KL1) 5.3 × 104

≥ 1.7 × 1020 HPGe γ spectrometry of
enriched 106Cd

(Rukhadze et al.,
2011b)
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TABLE V. (Continued)

Transition
Q (keV)
ι (%)

Decay channel,
level of daughter
nuclei (keV) Δ (keV)

Expt.
limit (yr)

Experimental
technique
(reference) Γf (eV) Rf

KL, 2; 3− 2748.2(4) −ð0.8 − 0.3Þ � 0.4 ≥ 1.4 × 1021 Enr. 106CdWO4

scintillatorc (Belli
et al., 2020)

8.3 (KL3) 1.6 × 107

108Cd → 108Pd
271.8(8)
0.888(11)

2EC, 0þ g.s. 223.1(8) ≥ 1.0 × 1018 CdWO4 scintillator
(Belli et al., 2008b)

12.5 (KK) 55

112Sn → 112Cd
1919.80(16)
0.97(1)

KK, 0þ 1870.96(5) −4.62� 0.17 ≥ 1.3 × 1021 HPGe γ spectrometry
of enriched

14.6 (KK) 1.5 × 105

KK, 0þ g.s. ≥ 1.1 × 1021 112Sn (Barabash et al.,
2011)

KL, 0þ g.s. ≥ 8.2 × 1020

LL, 0þ g.s. ≥ 6.4 × 1020

120Te → 120Sn
1730(3)
0.09(1)

KK, 0þ g.s. ≥ 6.0 × 1017 HPGe γ spectrometry
(Barabash, Hubert,
Hubert, and Umatov,
2007)

KL, 0þ g.s. ≥ 3.9 × 1017 HPGe γ spectrometry
(Barabash, Hubert,
Hubert, and Umatov,
2007)

LL, 0þ g.s. ≥ 2.9 × 1017 HPGe γ spectrometry
(Barabash, Hubert,
Hubert, and Umatov,
2007)

KK, 2þ 1171.265(15) 500� 3 17.1 (KK) 15

124Xe → 124Te KK, 0þ=4þ 2790.41(9) 10.3� 2.2 19.8 (KK) 4.1 × 104

2863.9(22) KK, 2þ 2808.66(8) −8.0� 2.2 19.8 (KK) 6.8 × 104

0.095(5) KL1, 2þ 2817.48(11) 10.1� 2.2 12.1 (KL1) 2.6 × 104

L1L1, 2853.2(6) 1.2� 2.3 4.4 (L1L1) 6.4 × 105

126Xe → 126Te
918(4)
0.089(3)

2EC, 0þ g.s. 854(4) 19.8 (KK) 6

KK, 2þ 666.352(10) 188(4) 19.8 (KK) 122

130Ba → 130Xe
2618.9(26)
0.11(1)

2EC, 0þ g.s. ≥ 2.8 × 1021 Geochemical
(Meshik et al., 2001)d

≥ 7.4 × 1020 Geochemical
(Pujol et al., 2009)d

KK, 0þ 2017.06(16) 532.7� 2.6 23.0 (KK) 18

KK, 1, 2 2502.207(25) 47.6� 2.6 23.0 (KK) 2.2 × 103

KK, 2544.43(8) 5.3� 2.6 23.0 (KK) 1.5 × 105

L1L2, 2608.426(19) −0.1� 2.6 5.1 (L1L2) 1.6 × 108

132Ba → 132Xe
843.9(11)
0.10(1)

2EC, 0þ g.s. 774.8(11) ≥ 2.5 × 1021 Geochemical
(Meshik et al., 2001)e

23.0 (KK) 8

KK, 2þ 667.715(2) 107.1� 1.1 23.0 (KK) 436
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TABLE V. (Continued)

Transition
Q (keV)
ι (%)

Decay channel,
level of daughter
nuclei (keV) Δ (keV)

Expt.
limit (yr)

Experimental
technique
(reference) Γf (eV) Rf

136Ce → 136Ba
2378.55(27)
0.186(2)

KK, 0þ g.s. ≥ 2.1 × 1018 HPGe γ spectrometry
(Belli et al., 2017)

KL, 0þ g.s. ≥ 3.4 × 1018 HPGe γ spectrometry
(Belli et al., 2017)

LL, 0þ g.s. ≥ 8.4 × 1018 HPGe γ spectrometry
(Belli et al., 2017)

KK, 0þ 2141.38(3) 162.29� 0.27 ≥ 4.2 × 1018 HPGe γ spectrometry
(Belli et al., 2017)

26.4 (KK) 218

2EC, 0þ 2315.26(7) −11.59� 0.28 ≥ 2.5 × 1018 HPGe γ spectrometry
(Belli et al., 2017)

26.4 (KK) 4.3 × 104

138Ce → 138Ba
691(5)
0.251(2)

KK, 0þ g.s. 616(5) ≥ 5.5 × 1017 HPGe γ spectrometry
(Belli et al., 2014)

26.4 (KK) 15

KL, 0þ g.s. ≥ 8.3 × 1017 HPGe γ spectrometry
(Belli et al., 2017)

LL, 0þ g.s. ≥ 4.2 × 1018 HPGe γ spectrometry
(Belli et al., 2017)

144Sm → 144Nd
1782.4(8)
3.08(4)

KK, 0þ g.s. ≥ 4.4 × 1019 HPGe γ spectrometry
(Belli et al., 2019a)

KL, 0þ g.s. ≥ 1.7 × 1019 HPGe γ spectrometry
(Belli et al., 2019a)

LL, 0þ g.s. ≥ 1.4 × 1019 HPGe γ spectrometry
(Belli et al., 2019a)

KK, 4þ 1314.669(13) 380.6� 0.8 34.8 (KK) 52

KK, 2þ 1560.920(13) 134.3� 0.8 34.8 (KK) 419

152Gd → 152Sm All transitions ≥ 6.0 × 108 Analysis of average
55.69(18)

0.20(3)
KL, 0þ g.s. ð1.1 − 2.1Þ � 0.2 ≥ 6.0 × 108 parent-daughter

abundances
23.1 (KL1) 4.1 × 106

(Nozzoli, 2018)

156Dy → 156Gd
2005.95(10)
0.056(3)

KK, 0þ g.s. ≥ 2.2 × 1016 HPGe γ spectrometry
(Belli et al., 2011a)

KL, 0þ g.s. ≥ 1.7 × 1016 HPGe γ spectrometry
(Belli et al., 2011a)

LL, 0þ g.s. ≥ 1.7 × 1016 HPGe γ spectrometry
(Belli et al., 2011a)

KK, 2þ 1914.835(5) −9.33� 0.10 ≥ 1.1 × 1016 HPGe γ spectrometry
(Belli et al., 2011a)

44.8 (KK) 1.1 × 105

KL1, 1− 1946.344(10) 0.99� 0.10 ≥ 1.0 × 1018 HPGe γ sp. of enr.
156Dy (Finch and
Tornow, 2015)

26.2 (KL1) 5.8 × 106

KL1, 0− 1952.400(6) −5.06� 0.10 ≥ 2.2 × 1017 HPGe γ sp. of enr.
156Dy (Finch and
Tornow, 2015)

26.2 (KL1) 2.2 × 105

LL1, 0þ 1988.5(2) 0.7� 0.22 ≥ 9.5 × 1017 HPGe γ sp. of enr.
156Dy (Finch and
Tornow, 2015)

7.6 (L1L1) 3.4 × 106
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TABLE V. (Continued)

Transition
Q (keV)
ι (%)

Decay channel,
level of daughter
nuclei (keV) Δ (keV)

Expt.
limit (yr)

Experimental
technique
(reference) Γf (eV) Rf

LL3, 2þ 2003.749(5) −12.28� 0.10 ≥ 6.7 × 1016 HPGe γ sp. of enr.
156Dy (Finch and
Tornow, 2015)

7.4 (L3L3) 1.1 × 104

158Dy → 158Gd
282.2(24)
0.095(3)

KK, 0þ g.s. 181.7(24) ≥ 4.2 × 1016 HPGe γ spectrometry
(Belli et al., 2011a)

44.8 (KK) 295

KK, 2þ 79.5143(15) 102.2� 2.4 ≥ 2.6 × 1014 HPGe γ spectrometry
(Belli et al., 2011a)

44.8 (KK) 932

L1L1, 4þ 261.4580(16) 4.0� 2.4 ≥ 3.2 × 1016 HPGe γ spectrometry
(Belli et al., 2011a)

7.6 (L1L1) 1.0 × 105

162Er → 162Dy
1846.96(30)
0.139(5)

KK, 0þ g.s. ≥ 1.0 × 1018 HPGe γ spectrometry
(Belli et al., 2018)

KL, 0þ g.s. ≥ 9.6 × 1017 HPGe γ spectrometry
(Belli et al., 2018)

LL, 0þ g.s. ≥ 1.3 × 1018 HPGe γ spectrometry
(Belli et al., 2018)

KK, 3− 1738.999(4) 0.4� 0.3 ≥ 5.5 × 108 Analysis of average
parent-daughter
abundances
(Nozzoli, 2018)

50.6 (KK) 7.4 × 107

KL, 2þ 1782.68(9) ð1.4 − 2.7Þ � 0.3 ≥ 5.0 × 1017 HPGe γ spectrometry
(Belli et al., 2018)

29.6 (KL1) 3.1 × 106

LL, 4− 1826.753(4) ð2.1 − 4.6Þ � 0.3 ≥ 5.5 × 108 Analysis of average
parent-daughter
abundances
(Nozzoli, 2018)

8.6 (L1L1) 4.2 × 105

164Er → 164Dy
25.08(11)
1.601(3)

All transitions ≥ 1.0 × 109 Analysis of average
parent-daughter
abundances

L1L1, 0þ g.s. 6.99� 0.11 (Nozzoli, 2018)f 8.6 (L1L1) 3.8 × 104

168Yb → 168Er
1409.27(25)
0.123(3)

KK, 0þ g.s. ≥ 7.3 × 1017 HPGe γ spectrometry
(Belli et al., 2019b)

KL, 0þ g.s. ≥ 6.9 × 1017 HPGe γ spectrometry
(Belli et al., 2019b)

LL, 0þ g.s. ≥ 1.2 × 1018 HPGe γ spectrometry
(Belli et al., 2019b)

2EC, 0þ 1217.169(14) 77.13� 0.25 ≥ 1.5 × 1018 HPGe γ spectrometry
(Belli et al., 2019b)

57.0 (KK) 2.1 × 103

M1M1 ð2Þ−
1403.7357(23)

1.12� 0.25 ≥ 1.9 × 1018 HPGe γ spectrometry
(Belli et al., 2019b)

27.2 (M1M1) 4.7 × 106

174Hf → 174Yb
1100.0(23)
0.16(12)

KK, 0þ g.s. ≥ 5.8 × 1017 HPGe γ spectrometry
(Danevich et al., 2020)

64.0 (KK) 15

KL, 0þ g.s. ≥ 1.9 × 1018 HPGe γ spectrometry
(Danevich et al., 2020)

LL, 0þ g.s. ≥ 7.8 × 1017 HPGe γ spectrometry
(Danevich et al., 2020)

KK, 2þ 76.471(1) 900.9� 2.3 ≥ 7.1 × 1017 HPGe γ spectrometry
(Danevich et al., 2020)

64.0 (KK) 17
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TABLE V. (Continued)

Transition
Q (keV)
ι (%)

Decay channel,
level of daughter
nuclei (keV) Δ (keV)

Expt.
limit (yr)

Experimental
technique
(reference) Γf (eV) Rf

KL, 2þ 76.471(1) ≥ 6.2 × 1017 HPGe γ spectrometry
(Danevich et al., 2020)

LL, 2þ 76.471(1) ≥ 7.2 × 1017 HPGe γ spectrometry
(Danevich et al., 2020)

180W → 180Hf
143.23(28)
0.12(1)

KK, 0þ g.s. 12.53� 0.28 ≥ 9.4 × 1018 CaWO4 scint. bolometer
(Angloher et al., 2016)

71.8 (KK) 9.9 × 104

≥ 1.3 × 1018 ZnWO4 scintillator
(Belli, Bernabei et al.,
2011b)

L1L1, 2þ 93.3240(20) 27.36� 0.28 11.4 (L1L1) 3.3 × 103

184Os → 184W
1452.8(7)
0.02(2)

KK, 0þ g.s. ≥ 2.0 × 1017 HPGe γ spectrometry
(Belli et al., 2013a)

KL, 0þ g.s. ≥ 1.3 × 1017 HPGe γ spectrometry
(Belli et al., 2013a)

LL, 0þ g.s. ≥ 1.4 × 1017 HPGe γ spectrometry
(Belli et al., 2013a)

2EC, 0þ 1002.49(4) 311.3� 0.7 ≥ 3.5 × 1017 HPGe γ spectrometry
(Belli et al., 2013a)

80.2 (KK) 180

KK, ð0Þþ 1322.152(22) −8.4� 0.7 ≥ 2.8 × 1016 HPGe γ spectrometry
(Belli et al., 2013a)

80.2 (KK) 2.5 × 105

KL, 2þ 1386.296(13) −ð13.2 − 15.1Þ � 0.7 ≥ 6.7 × 1016 HPGe γ spectrometry
(Belli et al., 2013a)

46.4 (KL1) 4.4 × 104

LL, 2þ 1431.02(5) ð−2.4 −þ1.4Þ � 0.7 ≥ 8.2 × 1016 HPGe γ spectrometry
(Belli et al., 2013a)

9.6 (L2L3) 2.4 × 109

190Pt → 190Os
1401.3(4)
0.012(2)

KK, 0þ g.s. ≥ 5.7 × 1015 HPGe γ spectrometry
(Belli et al., 2011b)

KL, 0þ g.s. ≥ 1.7 × 1016 HPGe γ spectrometry
(Belli et al., 2011b)

LL, 0þ g.s. ≥ 3.1 × 1016 HPGe γ spectrometry
(Belli et al., 2011b)

KN, 1,2 1326.9(5) ð−0.1 −þ0.3Þ � 0.6 52.3 (KN1) 7.0 × 108

LM, ð0; 1; 2Þþ 1382.4(2) ð2.9 − 6.1Þ � 0.5 ≥ 2.9 × 1016 HPGe γ spectrometry
(Belli et al., 2011b)

21.9 (L1M1) 5.7 × 105

L3M3, 3− 1387.00(2) 1.0� 0.4 12.6 (L3M3) 2.9 × 106

196Hg → 196Pt
818.6(30)
0.15(1)

KK, 0þ g.s.

KL, 2þ 688.693(5)

661.8� 3.0

37.6� 3.0

≥ 2.5 × 1018 Ge(Li) γ spectrometry
(Bukhner et al., 1990)

99 (KK)

58.3 (KL1)

49

8.9 × 103

aThe result 4.3 × 1019 yr of Frekers et al. (2011) for 74Se was corrected to 1.4 × 1018 yr by Ješkovský et al. (2015) and reestimated as
3.9 × 1016 yr by Lehnert, Wester et al. (2016). See those works for details.

bThe result 1.5 × 1019 yr of Ješkovský et al. (2015) for 74Se was reestimated as 6.3 × 1017 yr by Lehnert, Wester et al. (2016).
cIn coincidence with CdWO4 counters.
dThe limit is valid for all possible 2β-decay modes in 130Ba.
eThe limit is valid for all possible 2EC-decay modes in 132Ba.
fThe limit is valid for all possible 2EC-decay modes in 164Er.
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of the 2ν2EC in 78Kr with the half-life of T1=2¼½9.2þ5.5
−2.6ðstatÞ�

1.3ðsystÞ�×1021yr was obtained by Gavrilyuk et al. (2013).
The indications of barium 2EC decay should be confirmed in
direct counting experiments, while the 78Kr and 124Xe results
also need to be confirmed with higher statistics in independent
experiments.
In Table V, the experimental limits on neutrinoless

2EC half-lives are presented. The data are given for the
transitions for which the probability is expected to be greatest:
either to the ground state or to the excited levels of the
daughter nuclide with possible resonant enhancement of the
decay rate. The deexcitation width of the electron shell of
the daughter nuclides Γf ¼ Γα þ Γβ and the resonance
parameter Rf ¼ Γf=ðΔ2 þ Γ2

f=4Þ (normalized on the Rf value

for 54Fe) are also included in the table to indicate the status of
the transitions as potential resonances.
The experiments to investigate double-beta-plus processes

can be divided into three groups depending on the exper-
imental technique: geochemical investigations [the only
examples are the searches for 2β decay of barium (Meshik
et al., 2001; Pujol et al., 2009; Meshik and Pravdivtseva,
2017)], γ spectrometry (the search for γ quanta expected in the
decay processes when using γ spectrometers, mainly HPGe
detectors), and the calorimetric approach (2β active nuclei are
incorporated into a detector). For instance, investigations
of 106Cd were realized by using the last two methods: the
search for γ quanta from enriched 106Cd samples with HPGe
(Barabash et al., 1996; Rukhadze et al., 2011a, 2011b)
or NaI(Tl) detectors (Belli, Bernabei et al., 1999)

(γ spectrometry), and with the help of a CdTe cryogenic
bolometer (Ito et al., 1997), CdZnTe diodes (Dawson et al.,
2009b), and a cadmium tungstate crystal scintillator enriched
in 106Cd (106CdWO4) (Belli et al., 2012b) (calorimetric
approach). Figure 11 presents a γ spectrometry approach
used in the TGV-2 experiment.
The proportional chamber filled with enriched 78Kr used in

the experiment by Gavrilyuk et al. (2013) is an example of the
calorimetric approach; see Fig. 12, left panel. CdZnTe diodes
were applied by the COBRA Collaboration to investigate
double-beta processes in Zn, Cd, and Te isotopes; see Fig. 12,
right panel. Another case are scintillation calorimetric experi-
ments, as, for instance, the experiment to search for 2β decay
of 106Cd with the help of the 106CdWO4 crystal scintillator
(Belli et al., 2012b). The next stages of the experiment with
the 106CdWO4 scintillation detector operated in coincidence
with four HPGe γ detectors (Belli et al., 2016) and with two
CdWO4 counters (Belli et al., 2020) represent a combination
of the last two approaches.
An advantage of the γ spectrometry method is the

high-energy resolution of HPGe detectors (approximately
a few keV). However, the typical detection efficiency of
HPGe γ detectors is rather low: on the level of fractions
of a percent to several percent depending on the decay
mode and the setup configuration.4 The detection efficiency
of the calorimetric method is much higher. Depending on
the decay mode, energy threshold, detector volume, and
composition, the detection efficiency can approach 100%.5

In addition, the calorimetric method allows one to distin-
guish between different modes and channels of 2β proc-
esses. Examples of Monte Carlo simulated responses of the
106CdWO4 detector to different channels and modes of 2β
decay of 106Cd are presented in Fig. 13.
However, the γ spectrometry approach can clearly distin-

guish between the 2ν and 0νmodes of the 2EC decay too. The
2ν2EC decay to the ground state of the daughter nucleus gives
a cascade of x rays and Auger electrons, with the individual
energies scaling up to the maximal energy of the K x rays. A
combination of x-ray peaks is expected in the decay [as shown
in Fig. 14 (top panel) for 190Pt]; x rays from other atomic shells
(L;M;…) can be emitted in the 2ν2EC decay too. However,
detection of such small energies by HPGe γ spectrometry is
problematic given that even in the case of one of the heaviest
2EC nuclides 190Pt the energy of L x rays varies from 9
to 13 keV.
In the process of 0ν2EC decay, in addition to x rays, it is

expected that one or more inner-bremsstrahlung photons
are emitted, carrying off the total decay energy, which in
the 2ν process is taken by the neutrinos (Rosen and
Primakoff, 1965). The energy of the γ quanta is expected
to be equal to Eγ ¼ Q − ϵ�αβ, where ϵ�αβ is the excitation
energy of the atomic shell with two vacancies α and β of the

FIG. 10. Result of the XENON1t data analysis in the region of
interest for 2ν2EC in 124Xe. (a) 2ν2EC decay peak with area 126
events, obtained using the fit of the experimental data. (b) Re-
siduals for the experimental data best fit. (c) Histogram of the 125I
peak produced by neutron activation after the detector calibra-
tions with an external 241AmBe neutron source. The peak area in
(a) corresponds to a half-life of 124Xe of 1.8 × 1022 yr. From
XENON Collaboration, 2019.

4See Barabash, Hubert, Hubert, and Umatov (2007), Barabash
et al. (2011), Belli et al. (2011a, 2011b, 2013a, 2013b), and
Rukhadze et al. (2011a).

5See Kiel, Münstermann, and Zuber (2003), Andreotti et al.
(2011), Belli, Bernabei et al. (2011b), Belli et al. (2012b), Gavrilyuk
et al. (2013), Mei et al. (2014), and Angloher et al. (2016).
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daughter nucleus. Therefore, the expected energies of the
quanta for the 0ν2EC decay to the g.s.’s of the daughter
nucleus are much higher than those in the 2ν2EC decay; see
Fig. 14 (bottom panel).

There are several reasons for the lower sensitivity of the
2βþ experiments (in comparison to the 2β− ones). First, the
development of experimental techniques and the scale of
the experiments are rather modest. For example, the amount of
enriched isotopes utilized does not exceed tens of grams,
while tens or even hundreds of kilograms of isotopically
enriched materials have already been used in 2β− experiments.
Then one should take into account the much lower abundance
of 2βþ active isotopes (ι) in the natural isotopic compositions
of elements, which is usually lower than 1%. There are only
six nuclei, namely, 40Ca (ι ¼ 96.941%), 54Fe (5.845%), 58Ni
(68.0769%), 64Zn (49.17%), 92Mo (14.649%), and 96Ru
(5.54%) from the full list of 34 double-beta-plus candidates
with ι values greater than 5% (Tretyak and Zdesenko, 2002;
Meija et al., 2016). For comparison, from the full list of 35
potentially 2β− decaying nuclides, only five candidates have ι
below 5%. We note that starting from 74Se the list of

FIG. 12. Left panel: low counting proportional chamber filled with enriched 78Kr used in the experiment by Gavrilyuk et al. (2013). 1,
anode wire; 2, insulator; 3, cathode; 4, copper tubes. From Gavrilyuk et al., 2010. Right panel: concept of the COBRACdZnTe detectors
array. From K. Zuber.

FIG. 11. Left panel: schematic view of the TGV-2 detector. HPGe, planar-type Ge detectors; EC/EC, enriched 106Cd foils; Al,
construction details made from Al-Si alloy; Cu, construction details made from copper; LN, liquid nitrogen; PA, preamplifiers. Right
panel: section view of the stack of HPGe detectors. 1, cylindrical holders for the detectors; 2, 106Cd foils; 3, electric contacts (bronze
wires in Teflon insulators). From Rukhadze et al., 2006.

FIG. 13. Monte Carlo simulated energy spectra of 2νKK,
0ν2EC decays of 106Cd to the ground state of 106Pd, and
neutrinoless resonant transitions of 106Cd to excited levels in
106Pd. From Belli et al., 2012b.
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2βþ=ECβþ=2EC nuclei practically coincides with the list of
the so-called bypassed (or p) nuclei (Frank-Kamenetsky and
Domogatsky, 1986), which cannot be created in usual r and s
processes of nucleosynthesis by successive neutron captures,
and whose abundances, as a result, are suppressed in com-
parison to those of r and s nuclei.
Finally, the released energy in the 2βþ and ECβþ decays is

lower than that in the 2β− decays, which results in a lower
probability for such processes due to the small phase-space
factors. For 0ν2β−-decay processes, because of the relation
among half-life T0ν

1=2, phase-space factor G0ν, the NME (M0ν),

andmββ: 1=T0ν
1=2 ¼ G0νjM0νj2jmββj2, the lower value ofG0ν for

2βþ=ECβþ processes results in a weaker limit on the effective
neutrino mass or other parameters, even if the same exper-
imental T1=2 limit is reached as for the 2β− decay. To undergo
2βþ decay, the energy release should exceed four electron
masses, and only six nuclei from the full list of 34 have enough
energy for this: 78Kr (Q ¼ 2848 keV), 96Ru (2715 keV), 106Cd
(2775 keV), 124Xe (2864 keV), 130Ba (2619 keV), and 136Ce

(2379 keV). All these nuclides, together with 16 additional
nuclides 50Cr, 58Ni, 64Zn, 74Se, 84Sr, 92Mo, 102Pd, 112Sn, 120Te,
144Sm, 156Dy, 162Er, 168Yb, 174Hf, 184Os, and 190Pt, undergo
ECβþ decays for which the released energy should exceed
2me þ ϵ�α, where ϵ�α is the binding energy of the captured
electron. And all of these 22 nuclides, together with the 12
remaining ones 36Ar, 40Ca, 54Fe, 108Cd, 126Xe, 132Ba, 138Ce,
152Gd, 158Dy, 164Er, 180W, and 196Hg, undergo 2EC processes.
The lower energy release also results in a lower experimental
sensitivity, since the background counting rate typically
decreases with energy. In the following we overview the
current status of experimental searches of the 2βþ, ECβþ,
and 2EC processes.

36Ar.—The first result for 0νKL capture in 36Ar
(T0ν

1=2 ≥ 1.9 × 1018 yr) was obtained (Chkvorets, 2008) in
the course of the research and development (R&D) inves-
tigations in the GERDA experiment in the search for 0ν2β−

decay of 76Ge using naked HP76Ge detectors in liquid argon. It
was improved by 3 orders of magnitude with the data from
phase I of the GERDA experiment in underground conditions
of the Gran Sasso underground laboratory [LNGS, depth of
3600 m. (w.e.)] where 89.2 tons of liquid argon were used as
the coolant medium and shield, T0ν

1=2ðKLÞ > 3.6 × 1021 yr at
90% C.L. (Agostini et al., 2016).

40Ca.—Limits for 2EC decay in 40Ca were set in 1999 with
the help of two 370 g low radioactive CaF2ðEuÞ crystal
scintillators at the LNGS over ≃104 d (Belli et al., 1999).
The low-energy threshold of 4 keV allowed Belli et al. to
also set a limit on the 2ν process, in which an energy release
in the detector of only 6.4 keV was expected. The achieved
T1=2 limits (approximately 1021 yr) were recently slightly
improved with CaWO4 scintillating bolometers (total expo-
sure of 730 kg d) (Angloher et al., 2016), which were used in
the CRESST-II dark-matter experiment.

50Cr.—The first limit on ECβþ decay of 50Cr was set with
photographic emulsions to record tracks of β particles
(Fremlin and Walters, 1952). The measurements underground
at a depth of 570 m gave a half-life limit of approximately
1014 yr. It was improved in 1985 with two HPGe detectors of
110 cm3 volume each, searching in coincidence for two
511 keV γ quanta after annihilation of the emitted positron;
measurements of a 148 g Cr sample for 163 h resulted in the
limit T0νþ2ν

1=2 > 1.8 × 1017 yr (Norman, 1985). The best cur-

rent ECβþ sensitivity (T1=2 > 1.3 × 1018 yr) was achieved by
Bikit et al. (2003) with a HPGe detector that measured in
coincidence with a NaI(Tl) a 209 g CrO3 sample for 720 h.

54Fe.—The only known limits on double-electron capture
in 54Fe were set in the measurements of Bikit et al. (1998)
with the help of a HPGe detector placed in the center of
an iron cubewith an inner volume of 1 m3 and a wall thickness
of 25 cm. The search for γ rays emitted in the 2EC decay
for ≃6700 h gave T1=2 limits of approximately ð4.1–5.0Þ×
1020 yr, depending on the decay channel (KK, KL, or LL).

58Ni.—The first limit on ECβþ decay of 58Ni of ≃1017 yr
was reported in an experiment with photoemulsion plates
(Fremlin and Walters, 1952). A level of limT1=2 ∼ 1019 yr
was reached in an experiment with a Ge(Li) detector and a
2.1 kg Ni sample for 187 h (Bellotti et al., 1982), and in
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FIG. 14. Upper panel: low-energy part of the spectrum accu-
mulated by a HPGe detector with a platinum sample over 1815 h.
The distribution expected for the 2νKK decay of 190Pt with a half-
life of 8.4 × 1014 yr excluded at 90% C.L. is shown with a solid
line. Lower panel: part of the energy spectrum accumulated with
the platinum sample in the energy region where peaks from the
0ν2EC processes in 190Pt (KK,KL, and LL) to the ground state of
190Os are expected. The error bars take into account the
uncertainty of the Q value of 2EC in 190Pt available at the time
when the experiment was realized (�6 keV) and different
energies of the L x rays of osmium. From Belli et al., 2011b.
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measurements with a 1.6 kg Ni sample using two NaI(Tl)
scintillators in coincidence for 100 h (Norman and DeFaccio,
1984). The sensitivity was improved by 1 order of magnitude
in underground measurements at the Baksan Neutrino
Observatory of 660 m. (w.e.) depth with two NaI(Tl) scintil-
lators and a 1.9 kg Ni sample (Vasil’ev et al., 1993). Further
improvement of the sensitivity to the neutrinoless 2EC process
of T1=2 > 2.1 × 1021 yr was achieved by using a 7.3 kg Ni
sample measured for 1400 h with a low-background HPGe
detector at the Felsenkeller underground laboratory [110 m.
(w.e.)] (Lehnert, Degering et al., 2016). The best sensitivity to
date was reported by Rukhadze et al. (2020), who used a large
volume (≈600 cm3) HPGe detector and a 21.7 kg Ni sample
installed at the Modane Underground Laboratory [4800 m.
(w.e.)] to search for γ quanta expected in the 2EC and ECβþ

processes in 58Ni. A preliminary limit on the 0ν2EC g.s. to g.s.
transition in 58Ni is T1=2 > 4.1 × 1022 yr.

64Zn.—Searches for 64Zn ECβþ activity started in 1952
when a Zn sample was measured with photoemulsions
(Fremlin and Walters, 1952). However, no useful limits could
be extracted from these data because the emitted positrons
have a low energy of ≤ 73 keV. In 1953, the characteristic
x rays resulting from 2EC decay were searched for with
proportional counters. The determined limit was approxi-
mately 1016 yr (Berthelot et al., 1953). In 1985, ECβþ decay
of 64Zn was searched for with two HPGe detectors with
volume 110 cm3 each looking for 511 keV γ rays in
coincidence from a 228 g Zn sample. A limit T0νþ2ν

1=2 > 2.3 ×

1018 yr was set after 161 h of measurements (Norman, 1985).
In 1995, an indication on a positive ECβþ effect was

claimed in measurements (at Earth’s surface) using a 350 g Zn
sample with HPGe and NaI(Tl) detectors in coincidence. After
nearly 400 h of data taking an excess of counts in the 511 keV
annihilation peak was observed that corresponds to a half-life
T0νþ2ν
1=2 ¼ ð1.1� 0.9Þ × 1019 yr (Bikit et al., 1995). This claim

was disproved in two experiments:
(1) Search for double-beta-plus processes in 64Zn with

emission of γ quanta by using a HPGe detector
(with volume 456 cm3) and a CsI(Tl) scintillator
(≃400 cm3) in coincidence. The measurements of a
460 g Zn sample for 375 h at the Cheong-Pyung
underground laboratory [1000 m. (w.e.)] gave a limit
T0νþ2ν
1=2 > 1.3 × 1020 yr (Kim et al., 2007).

(2) A scintillation detector with a 117 g ZnWO4 crystal
scintillator was utilized in an experiment at the LNGS
for 1902 h. ECβþ decay was not observed, the limits
T0ν
1=2 > 2.2 × 1020 yr and T2ν

1=2 > 2.1 × 1020 yr were
set (Belli et al., 2008a). The result was further
improved with a larger 0.7 kg detector to T0νþ2ν

1=2 ≥
9 × 1020 (Belli, Bernabei et al., 2011b).

The 2EC processes in 64Zn were searched for in the
following experiments:

(1) Half-life limits on the 2EC decay of 64Zn of approx-
imately 1017 yr were set with the help of a Cd0.9Zn0.1Te
semiconductor detectorwithmass 2.89 g over 1117 h of
data taking at the LNGS (Kiel, Münstermann, and
Zuber, 2003). The sensitivitywasmoderately improved
in the next stage of the experiment with four

Cd0.9Zn0.1Te crystals of 6.5 g each (Bloxham et al.,
2007). Advancements in experimental sensitivity are
expected with the currently running setup of 64
Cd0.9Zn0.1Te detectors (Ebert et al., 2016b).

(2) ZnWO4 crystal scintillator, mass of 4.5 g, 429 h of
data collection in the Solotvina Underground Labo-
ratory [1000 m. (w.e.)], half-life limits of approxi-
mately 1018 yr (Danevich et al., 2005).

(3) ZnWO4 scintillators with mass up to 0.7 kg at the
LNGS (Belli, Bernabei et al., 2011b). The strongest
limits to date on the 2EC decay of 64Zn were set:
T2ν
1=2 ≥ 1.1 × 1019 yr and T0ν

1=2 ≥ 3.2 × 1020 yr.
74Se.—The first search for ECβþ processes in 74Se was

performed in measurements of a 563 g Se sample for 437 h
with a 400 cm3 HPGe detector and resulted in T1=2 limits of
approximately 1018–1019 yr (Barabash, Hubert, Nachab, and
Umatov, 2007), depending on the decay mode (2ν or 0ν) and
excited level of the daughter nucleus. The next search for a
potentially resonant LL capture of 74Se to the 1204 keV level
of 74Ge was realized in an experiment (Frekers et al., 2011)
using HPGe γ spectrometry of a 3 kg Se sample with a limit
T1=2 ≥ 4.3 × 1019 yr. However, this value was corrected to
> 1.4 × 1018 yr by Ješkovský et al. (2015) and reevaluated as
> 3.9 × 1016 yr by Lehnert, Wester et al. (2016) because the
method of setting the limit was not reliable enough. Lehnert,
Wester et al. (2016) obtained the limit (Ješkovský et al., 2015)
for the 0ν2EC transition of 74Se to the 1204 keV excited level
of 74Ge, T1=2 ≥ 1.5 × 1019 yr with the help of HPGe γ
spectrometry in coincidence with NaI(Tl) scintillation
counter of the same selenium sample as in the experiment
(Frekers et al., 2011). The limit was reevaluated as T1=2 ≥
6.3 × 1017 yr for the same reason of a not quite correct
interpretation of the experiment sensitivity as a half-life limit.
Lehnert, Wester et al. (2016), after measurements of an
≈2.5 kg selenium sample by using the HPGe γ detector
located in the Felsenkeller underground laboratory, obtained
T1=2 ≥ 7.0 × 1018 yr for the 0νLL transition of 74Se to the
1204.2 keV excited state of 74Ge. This value was further
improved recently with 600 cm3 HPGe detector and 1.6 kg Se
source to T1=2 ≥ 1.1 × 1019 yr, with ≃1019 yr limits also for
other transitions (Barabash et al., 2020).

78Kr.—78Kr is one of the six nuclides whoseQ values allow
all three channels of double-beta-plus decays: 2EC, ECβþ,
and 2βþ. The first experiment to search for ECβþ and 2βþ

decay of 78Kr was performed in 1994 with a high pressure
ionization chamber placed within an array of six large volume
NaI(Tl) scintillators of ≃3000 cm3 each. The ionization
chamber contained 35 lt of enriched to 94.08% 78Kr. The
data were collected in the Canfranc Underground Laboratory
[675 m. (w.e.)] for 4435 h; derived T1=2 limits for 2βþ and
ECβþ processes remain among the best reached for double-
beta-plus nuclei (≃1021 yr) (Saenz et al., 1994).
Experiments (Gavriljuk et al., 2000, 2011) at the Baksan

Neutrino Observatory [4900 m. (w.e.)] with enriched 78Kr led
to limits of approximately 1020–1021 yr. An indication of the
2νKK capture with T1=2 ¼ 9.2þ5.7

−2.9 × 1021 yr was obtained
with a large proportional counter (49 lt) filled by gas enriched
in 78Kr to 99.81% (Gavrilyuk et al., 2013) [recently updated to
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1.9þ1.3
−0.8 × 1022 yr (Ratkevich et al., 2017)]. Limits for other

modes of decay were also set: in particular, a possible resonant
0νKK capture to the 2þ 2838 keV level of 78Se was limited
as T1=2 ≥ 5.4 × 1021 yr.

84Sr.—The first limit (≃1013 yr) on ECβþ decay of 84Sr was
derived by Tretyak and Zdesenko (1995) through analysis of
the photoemulsion experiment (Fremlin and Walters, 1952)
with corrections on the decay energy and the natural abun-
dance of the isotope. 2EC and ECβþ processes in 84Sr have
been investigated at a level of T1=2 ∼ 1015–1016 yr with a
small (6.6 g) sample of SrI2ðEuÞ crystal scintillator measured
over 706 h at the LNGS using a 468 cm3 HPGe detector (Belli
et al., 2012a). Furthermore, R&D with a 54 g SrF2 scintillat-
ing bolometer (Diaz, 2013) allowed limits to be set on a few
decay modes to T1=2 ∼ 1015–1016 yr.

92Mo.—A limit on ECβþ decay of 92Mo can be extracted
from a photoemulsion experiment (Fremlin and Walters,
1952) as ≃1015 yr. In 1955, double-positron tracks emitted
from aMo foil were searched for with aWilson cloud chamber
(Winter, 1955b). The determined limit of 4 × 1018 yr should
be discarded because, as we now know, the energy released in
the decay is not sufficient for emission of two positrons.
The search for the 2EC transition of 92Mo to excited levels of
92Zr was realized in 1982 in measurements on Earth’s surface
using a 1.82 kg Mo sample with a 130 cm3 Ge(Li) detector for
161 h, with limits of approximately 1018 yr (Bellotti et al.,
1982). In 1985, a 324 g Mo sample was sandwiched between
two HPGe detectors of 110 cm3 each looking for coincidence
of 511 keV γ quanta; T1=2 limits of≃1017 yr were set (Norman,
1985). In 1987, positrons emitted from thin Mo foil in ECβþ

decay of 92Mo were searched for with a time projection
chamber; after 3.05 h of data taking, limits were set as
1017–1018 yr (Elliott, Hann, and Moe, 1987). The best known
limits on the double-beta decay of 92Mo of approximately
1021 yr were set in 1995–1997 in underground measurements
of 2.5 kg monocrystal Mo rods with a 400 cm3 HPGe detector
in the Modane Underground Laboratory for 1316 h (Aunola
et al., 1995; Barabash et al., 1997).
The search for ECβþ decay of 92Mo was also pursued in the

Yangyang Underground Laboratory at a depth of 700 m with a
277 g CaMoO4 crystal scintillator surrounded by 14 large CsI
scintillators that served as a passive and active shielding (Lee
et al., 2011); the achieved limit of T1=2 ≥ 2.3 × 1020 yr is
slightly better than the result from Barabash et al. (1997)
(T1=2 ≥ 1.9 × 1020 yr). The sensitivity of the experiment by
Kang et al. (2013), in which a 411 g CaMoO4 crystal was
used in coincidence with a HPGe detector, was approxi-
mately 1019–1020 yr.

96Ru.—In fact, 96Ru is the only nuclide from the list of
six potential 2βþ decaying nuclides that has an appreciable
natural isotopic abundance of ι ¼ 5.54%. Notwithstanding
these favorable features for experimental investigation, the
first search was performed only in 1985, where a Ru sample of
50 g was measured with two HPGe detectors (110 cm3) in
coincidence for 178 h. Determined limits on 2βþ and ECβþ

decays to the ground state and excited levels of 96Mo were
about 1016 yr (Norman, 1985). These limits were improved to
approximately ≃1019 yr by Belli et al. (2009b) and Andreotti

et al. (2012). The best results of approximately 1020–1021 yr
were obtained at the LNGS in measurements with a highly
purified Ru sample (mass of 720 g) and four HPGe detectors
of ≃225 cm3 each for 5479 h (Belli et al., 2013b).

102Pd.—First T1=2 limits on 2EC processes in 102Pd were
obtained in the experiment at the Felsenkeller underground
laboratory, where a 802 g Pd sample was measured with a
HPGe detector; the results were on the order of 1018 yr
(Lehnert and Zuber, 2011). They were improved in measure-
ments with two sandwiched HPGe detectors at the HADES
underground laboratory [500 m. (w.e.)] (Lehnert et al., 2013).
Further measurements were performed at the LNGS in a setup
with four HPGe detectors (≃225 cm3 each) for 2093 h; joint
analysis of all three measurements pushed the T1=2 limits to
approximately 1019 yr (Lehnert, Andreotti et al., 2016).

106Cd.—The nuclide 106Cd is among the most investigated
2βþ nuclides, with a long history of experimental studies.
Limits on 2βþ and ECβþ decays of approximately 1015 yr can
be extracted from the measurements using a Cd sample with
photographic emulsions. Searches for positrons emitted in
2βþ decay were performed in 1955 with a Wilson cloud
chamber in the magnetic field and a Cd foil with a mass of
30 g; the experiment resulted in a limit of ≃1016 yr (Winter,
1955b). In 1984, in measurements of a 153 g Cd sample for
72 h with two NaI(Tl) scintillators in coincidence, limits
≃1017 yr were determined for 2βþ, ECβþ and 2EC processes
(Norman and DeFaccio, 1984).
An experimentwith a 116CdWO4 crystal scintillator (15 cm3,

enriched in 116Cd to 83%) in the Solotvina Underground
Laboratory was aimed at the investigation of 2β− decay of
116Cd. However, the data collected over 2982 h were also used
to set limits for other nuclides, in particular, for 106Cd of
approximately 1017 − 1019 yr, depending on the decay mode
Georgadze et al. (1995). A “source ¼ detector” approach and a
low-energy threshold allowed a limit to be set on 2νKK capture
(≃1017 yr) for the first time.
An external Cd foil (331 g) was measured at the Modane

Underground Laboratory with a 120 cm3 HPGe detector for
1137 h, aiming at the detection of γ quanta from annihilation
of positrons and from deexcitation of the daughter 106Pd
nucleus if the excited levels are populated (Barabash et al.,
1996). Half-life limits of approximately 1018–1019 yr were
set. In 1996, a large (1.046 kg) CdWO4 scintillator with
natural Cd composition was measured at the LNGS for 6701 h
(Danevich et al., 1996). Limits on the half-life for 2βþ and
ECβþ decays were about ≃1019 yr for 0ν, and limits were
approximately ≃1017 yr for 2ν processes. A small (0.5 g)
CdTe bolometer operating at a temperature of 10 mK was
tested for 72 h by Ito et al. (1997). The derived limit on
0νECβþ decay of 106Cd was 1.4 × 1016 yr, which is lower
than those reached with more traditional techniques at that
time, particularly due to the small size of the CdTe bolometer.
Cd samples of natural composition with 1.25% of 106Cd

were used in all the previously mentioned experiments [in a
116CdWO4 scintillator (Georgadze et al., 1995) 106Cd was
even depleted]. On the contrary, a cadmium sample with mass
of 154 g enriched by 106Cd in 68% was used in experiment
(Belli, Bernabei et al., 1999). Measurements at the LNGS with
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two low-background NaI(Tl) scintillators for 4321 h enabled a
level of the half-life sensitivity of more than 1020 yr to be
reached for 2βþ, ECβþ, and 2EC processes accompanied by
emission of γ quanta. In 2003, the long-term (14183 h)
experiment in the Solotvina Underground Laboratory with
three enriched 116CdWO4 scintillators (total mass of 330 g)
was finished (Danevich et al., 2003). Together with measure-
ments for 433 h with a nonenriched CdWO4 crystal of 454 g,
sensitivity for 106Cd was improved by approximately 1 order
of magnitude over the result of Georgadze et al. (1995).
A radiopure cadmium tungstate crystal scintillator with a

mass of 216 g produced from cadmium enriched in 106Cd to
66% (106CdWO4) was grown by Belli et al. (2010).
Measurements at the LNGS gave limits on 2β processes of
approximately 1020 yr (Belli et al., 2012b). In the second
stage, the 106CdWO4 scintillator was installed between four
HPGe detectors (≃225 cm3 each) to improve the sensitivity
to decaymodes accompanied by γ quanta; this resulted in limits
of T1=2 ≥ 1020–1021 yr (Belli et al., 2016). In the third stage,
the 106CdWO4 detector was running in coincidence with two
largeCdWO4 crystal scintillators in a closegeometry to increase
the detection efficiency of γ quanta emitted from the 106CdWO4

crystal. The sensitivity of the experiment is approaching the
theoretical predictions for the 2νECβþ decay of 106Cd (that are
in the interval 1021–1022 yr). The resonant neutrinoless double-
electron capture to the 2718 keV excited state of 106Pd is
restricted as T1=2 ≥ 2.9 × 1021 yr (Belli et al., 2020).
At present, there are two other running experiments probing

the double-beta decays of 106Cd: COBRA and TGV-2. The
COBRA experiment started at the LNGS with two small
semiconductor detectors: Cd0.9Zn0.1Te (mass of ≃3 g) and
CdTe (mass of ≃6 g) (Kiel, Münstermann, and Zuber, 2003).
CdZnTe crystals are used in the current stage (Ebert et al., 2013,
2016a). Results for 106Cd T1=2 limits are approximately 1018 yr.
The main aim of the TGV-2 experiment (located at the Modane
UndergroundLaboratory) is the search for2νKK decay of 106Cd
(this channel has the lowest expected half-life). In the experi-
ment, 32 planar HPGe detectors are used with a total sensitive
volume ≈400 cm3; see Fig. 11. The Cd foils were enriched in
106Cd to 60%–75% in the first stage of the experiment
(Rukhadze et al., 2006, 2011a, 2011b); 23.2 g of Cd enriched
to 99.57% of 106Cd were used in Rukhadze et al. (2016). After
≃8200 h of data taking, limits are of approximately 1020 yr.

108Cd.—The first limits (1016–1017 yr) on 2EC decay of
108Cd were determined in 1995, with a 116CdWO4 scintillator
in the Solotvina Underground Laboratory (Georgadze et al.,
1995). They were improved later to more than 1017 yr with
higher statistics collected (14 183 h) and with data of the
larger (454 g) CdWO4 scintillator with natural Cd composi-
tion (Danevich, Georgadze et al., 1996; Danevich et al.,
2003). The best limits on the 2EC decay (≃1018 yr) were
obtained at the LNGS in the COBRA experiment (Kiel,
Münstermann, and Zuber, 2003) and with a CdWO4 crystal
scintillator of 434 g measured for 2758 h in the low-
background DAMA/R&D setup (Belli et al., 2008b).

112Sn.—The first limit on the 0νECβþ decay of 112Sn
of approximately ≃1013 yr was derived by Tretyak and

Zdesenko (1995) from the measurements of Sn samples
with photographic emulsions (Fremlin and Walters, 1952).
In 2007 bounds on ECβþ processes in 112Sn were improved to
≃1018 yr in an R&D to develop tin-loaded scintillators for 2β
experiments with 112Sn and 124Sn. A 1 lt sample of tetrabu-
tyltin ðC4H9Þ4Sn with a Sn concentration of 34% was
measured for 140 h with a 456 cm3 HPGe detector in the
Cheong-Pyung underground laboratory (Kim et al., 2007). In
another experiment, a 72 cm3 Ge detector was used for
measurements of a 1.24 kg Sn sample on Earth’s surface
for 831 h (Dawson, Ramaswamy et al., 2008). For 2EC
processes with a population of the ground and excited states of
112Cd, limits were about 1018 yr.
In a series of measurements by Barabash et al. (2008, 2009),

Dawson, Degering et al. (2008), and Kidd, Esterline, and
Tornow (2008) performed mostly underground with HPGe
detectors and external Sn sources (with natural composition
and enriched in 112Sn), limits of approximately 1019–1020 yr
were obtained. Limits in the range of ð0.1−1.6Þ×1021 yr were
achieved with a 100 g Sn sample enriched in 112Sn to 94.32%
measured in the Modane Underground Laboratory with a
380 cm3 HPGe detector for 3175 h (Barabash et al., 2011).

120Te.—The first limit on the 0νECβþ decay of 120Te
(≃1012 yr) was determined by Tretyak and Zdesenko
(1995) on the basis of the measurements of Te samples with
photoemulsions (Fremlin and Walters, 1952). It was improved
to ≃1016 yr by the COBRA Collaboration with small semi-
conductor detectors Cd0.9Zn0.1Te (≃3 g, 1117 h of data
collection) and CdTe (≃6 g, 1645 h) in the LNGS (Kiel,
Münstermann, and Zuber, 2003). Limits on KK captures to
the ground state and the first excited level of 120Sn were set
at about 1016 yr (Kiel, Münstermann, and Zuber, 2003).
Somewhat improved results were attained by Bloxham et al.
(2007) and Dawson et al. (2009a). The 2EC limits were
further improved to 1017–1018 yr by measuring 1 kg of natural
TeO2 powder with a 400 cm3 HPGe detector for 475 h at the
Modane Underground Laboratory (Barabash, Hubert, Hubert,
and Umatov, 2007). The best results for the ECβþ mode were
obtained in the CUORICINO/CUORE-0 experiments at the
LNGS with TeO2 bolometers: T1=2 > 2.7 × 1021 yr for
0νECβþ (Alduino et al., 2018b) and T1=2 > 7.6 × 1019 yr
for 2νECβþ (Andreotti et al., 2011).

124Xe.—124Xe has the highest available energy that can be
released in 2βþ processes (2864 keV). In the first experiment
with a gridded ionization chamber (volume of 3.66 lt), filled
with Xe and installed at the Baksan Neutrino Observatory
850 m. (w.e.) underground, the Xe gas of natural composition
and Xe sample enriched in 136Xe to 93% were measured over
710 and 685 h, respectively. Limits on the 2βþ and ECβþ

decays of 124Xe were set in the range of 1014–1018 yr,
depending on the decay mode (Barabash et al., 1989). A
limit on 2νKK decay was set by using a multiwire wall-less
proportional counter (fiducial volume of 4.44 lt, working
pressure of 4.8 atm), also installed at the Baksan Neutrino
Observatory but at a larger depth of 4700 m. (w.e.). After the
measurements for ≃1600 h with Xe samples of different
isotopic composition, a limit on 2νKK decay of 124Xe was
set at T1=2 ≥ 1.1 × 1017 yr (Gavriljuk et al., 1998).
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Recent developments and the start of the operation of
massive dark-matter detectors based on Xe allowed limits to
be extracted on 2νKK decay of 124Xe: T1=2 > 2.1 × 1022 yr
from 832 kg of liquid Xe at the Kamioka Observatory in Japan
[2700 m. (w.e.)] measured for 19 200 h (Abe et al., 2018) and
T1=2 > 6.5 × 1020 yr from the XENON100 TPC with 62 kg of
liquid Xe measured at the LNGS for 5390 h (Aprile et al.,
2017). In both these experiments natural Xe was used, with a
124Xe abundance of ι ¼ 0.095%. The result from the Baksan
Neutrino Observatory in Russia [4900 m. (w.e.)] obtained
with 52 g of Xe enriched in 124Xe to 21% after 1800 h of
measurement with a copper proportional counter is also
known: T1=2 > 2.5 × 1021 yr (Gavrilyuk et al., 2015). The
2ν2EC decay in 124Xe with a half-life of T1=2 ¼ ð1.8� 0.5Þ ×
1022 yr was finally observed in 2019 using the XENON1T
dark-matter detector (XENON Collaboration, 2019).

126Xe.—The limit on the 126Xe 2νKK decay was derived in
the XMASS experiment: T1=2>1.9×1022yr (Abe et al., 2018).

130Ba.—The first limits were derived as approximately
1011 yr for the 2βþ decay and 1012 yr for the ECβþ decay
(Tretyak and Zdesenko, 1995) from the experiment with
photographic emulsions (Fremlin and Walters, 1952). In 1996,
by reanalyzing the old geochemical measurements (Srinivasan,
1976) with respect to the amount of the daughter nuclide 130Xe
accumulated in a BaSO4 sample during geological time, the
limit of T1=2 > 4 × 1021 yr was set for all modes of 130Ba decay
(Barabash and Saakyan, 1996).We note that an indication of the
effect with T1=2 ¼ 2.1þ3.0

−0.8 × 1021 yr was obtained for another
sample (Barabash and Saakyan, 1996). A claim of a positive
observation of the 130Ba decay with the half-life T1=2¼ð2.16�
0.52Þ×1021yr (any decay channel and mode) was reported by
Meshik et al. (2001) through analysis of 130Xeexcess in aBaSO4

sample. It should be stressed that the T1=2 value is consistent
with the theoretical estimates for the 2νKK decay of 130Ba. The
excess of 130Xe was also found in another geochemical experi-
ment (Pujol et al., 2009), but the obtained half-life was smaller:
T1=2 ¼ ð6.0� 1.1Þ × 1020 yr.Meshik and Pravdivtseva (2017)
explained this disagreement as the contribution from cosmo-
genics, and the result of Meshik et al. (2001) was considered
more reliable.
As for the direct experiments with 130Ba, only one experi-

ment was performed in 2004. A BaF2 crystal scintillator with a
mass of 3615 g was measured in coincidence with two NaI(Tl)
detectors for 4253 h at the LNGS (Cerulli et al., 2004).
Derived limits on 2βþ and ECβþ decays to the ground state
and few excited levels of 130Xe are approximately 1017 yr, far
from what is needed to check the possible positive claims of
Meshik et al. (2001) and Pujol et al. (2009).

132Ba.—The first limit for 2EC in 132Ba T1=2 > 3.0×1020 yr
was set by Barabash and Saakyan (1996) from the reanalysis
of the geochemical data on excess of 132Xe in BaSO4 samples
(Srinivasan, 1976). An excess of 132Xe was observed in the
most “promising” barite sample in the already mentioned
geochemical measurements (Meshik et al., 2001) (in the other
four samples the 132Xe excess was too large), leading to the
132Ba half-life of T1=2 ¼ ð1.3� 0.9Þ × 1021 yr. However, for
132Ba Meshik et al. preferred more cautiously to give a limit
of T1=2 > 2.2 × 1021 yr.

136Ce. —The first limits on 2βþ decay of 136Ce were
obtained with the help of two CeF3 crystal scintillators
(masses of 75 and 345 g) measured for 88 and 693 h,
respectively, in the low-background setup at the LNGS. In
particular, a sensitivity to the 0ν2βþ decay was approximately
T1=2 > 1018 yr (Bernabei et al., 1997).
Limits for the ECβþ and 2EC processes in 136Ce were

derived from the long-term (13 949 h) measurements with a
635 g Gd2SiO5(Ce) crystal scintillator in the Solotvina
Underground Laboratory; the results for T1=2 limits were
approximately 1013–1016 yr, depending on the decay mode
(Danevich et al., 2001). The limit on 2νKK capture was later
improved from ≃1013 to ≃1016 yr in measurements with a
CeF3 scintillation detector (49 g) for 2142 h at the LNGS
(Belli et al., 2003). A small (6.9 g) CeCl3 scintillator was
measured at the LNGS for 1638 h also in the source ¼
detector approach, resulting in half-life limits of approxi-
mately 1016–1017 yr (Belli, Bernabei et al., 2011a).
Measurements of Ce-containing materials as external tar-

gets with HPGe detectors at the LNGS (CeCl3 6.9 g, HPGe
244 cm3, 1280 h) (Belli, Bernabei et al., 2009) and CeO2

[732 g, HPGe 465 cm3, 1900 h (Belli et al., 2014)] led to
limits of ≃1017–1018 yr for modes accompanied by emission
of γ quanta. The last sample was additionally purified (the
Th content in a 627 g sample was reduced by a factor of 60)
and remeasured for 2299 h with the same detector. This led to
an improvement of T1=2 limits of approximately > 1018 yr
(Belli et al., 2017).

138Ce.—In the previously described experiments (Danevich
et al., 2001;Belli et al., 2003, 2014;Belli, Bernabei et al., 2009,
2011a), the 2EC decays in 138Cewere searched for too; the best
limits to date on the neutrinoless KK, KL, and LL decays are
approximately ð4.0 − 5.5Þ × 1017 yr (Belli et al., 2017).

144Sm.—The first limit on the 2β decay of 144Sm
(≃8 × 108 yr) was obtained by Nozzoli (2018) by analyzing
the average abundances of parent-daughter nuclei in Earth’s
crust. The first counting experiment to search for double-beta
processes in 144Sm using low-background HPGe γ spectrom-
etry was performed at the LNGS by using a highly purified
samarium oxide sample, with the limits on different channels
and modes of 2EC and ECβþ decays of approximately T1=2 ≥
ð0.13 − 1.3Þ × 1020 yr (Belli et al., 2019a).

152Gd.—The first limit on 2EC in 152Gd was obtained
similarly to that of 144SmasT1=2 > 6 × 108 yr (Nozzoli, 2018).

156Dy.—The first searches for double-beta processes in
156Dy were realized at the LNGS through measurements of a
322 g sample of dysprosium oxide Dy2O3 of 99.98% purity
grade with a HPGe detector (244 cm3) for 2512 h (Belli et al.,
2011a). The limits obtained were about ≃1014–1016 yr,
depending on the decay mode. Finch and Tornow (2015)
measured two enriched Dy2O3 sources (803 mg, enriched in
156Dy to 21.58%, and 344 mg, 20.9%) at the Kimballton
Underground Research Facility in Virginia [1450 m. (w.e.)]
with two HPGe detectors in coincidence. The T1=2 limits were
improved to approximately ≃1017–1018 yr.

158Dy.—The limits on the 2EC processes in 158Dy of
approximately T1=2 > ð0.35 − 1.0Þ × 1015 yr (2ν mode) and
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T1=2>ð0.026−4.2Þ×1016 yr (0ν) were obtained at the LNGS
in the previously described experiment by Belli et al. (2011a).

162Er.—The first limit for 162Er (T1=2 > 5.5 × 108 yr) was
obtained by Nozzoli (2018) similarly to the limit for 144Sm
(valid for all decay modes). Much better results close to
1018 yr for specific transitions were obtained in measurements
of a highly purified Er2O3 sample (326 g) with a HPGe
detector (465 cm3) for 1934 h at the LNGS (Belli et al., 2018).

164Er.—The first limit of T1=2 > 1.0 × 109 yr was obtained
by Nozzoli (2018) (valid for all 2EC transitions).

168Yb.—The first limit of T1=2 > 5.7 × 108 yr was obtained
by Nozzoli (2018). A much higher sensitivity for different
modes and channels of the decay (limT1=2 ∼ 1014–1018 yr)
was reached in a low-background experiment with a sample
of highly purified ytterbium oxide measured using a low-
background HPGe detector (Belli et al., 2019b).

174Hf.—The first limit (T1=2 > 5.8 × 108 yr) was obtained
by Nozzoli (2018). The first counting experiment to search for
the 2EC and ECβþ decay of 174Hf was realized using a high-
purity 180 g sample of hafnium and the ultralow-background
HPGe-detector system located 225 m underground at the
HADES laboratory. After 75 d of data taking, limits were set
at approximately T1=2 > 1016–1018 yr (Danevich et al., 2020).

180W.—The first experimental limits on the 2EC decays
of 180W were derived in 1995 from measurements with an
enriched 116CdWO4 crystal scintillator (15 cm3) in the
Solotvina Underground Laboratory for 2982 h (Georgadze
et al., 1995). They were upgraded to ≃1016 yr with three
116CdWO4 crystals (total mass of 330 g) and higher statistics
(total mass of 14183 h), as well as with measurements for
433 h of a nonenriched CdWO4 crystal (454 g) (Danevich,
Georgadze et al., 1996; Danevich et al., 2003). The limits were
further improved in measurements at the LNGS with ZnWO4

scintillators to ≃1018 yr (Belli et al., 2009a; Belli, Bernabei
et al., 2011b), and with CaWO4 scintillating bolometers limits
were improved to ≃1019 yr (Angloher et al., 2016).

184Os.—The first limit on the ECβþ decay of 184Os
(≃1010 yr) was derived by Tretyak and Zdesenko (1995)
from data of the experiment with photoemulsions (Fremlin
and Walters, 1952). Searches for the 2EC and ECβþ decays of
184Os (including possible resonant 0ν2EC transitions) were
performed by Belli et al. (2013a) in measurements at the
LNGS with a 173 g ultrapure Os sample and a 468 cm3 HPGe
detector for 2741 h; this gave limits of T1=2 ≃ 1016–1017 yr.

190Pt.—Once again, the first limit on the ECβþ decay of
190Pt was set from a reanalysis of the photoemulsion experi-
ment (Fremlin and Walters, 1952) by Tretyak and Zdesenko
(1995) with T1=2 ≥ 1011 yr. 2EC decays of 190Pt with emis-
sion of γ quanta were searched for at the LNGS with a
468 cm3 HPGe detector and a 42 g platinum sample (Belli
et al., 2011b) for 1815 h; half-life limits were approxi-
mately 1016 yr.

196Hg.—The first experimental limits (≃1017 yr) on the
2EC in 196Hg were obtained with a Ge(Li) detector (35 cm3)
that was surrounded by an extremely large (320 kg) Hg shield
(containing 480 g of 196Hg) in the Solotvina Underground
Laboratory for 1478 h (Zdesenko and Kuts, 1986). The

sensitivity was further improved by 1 order of magnitude
in 1990 with the same Hg shielding but with a larger HPGe
detector (165 cm3) over 1109 h of data taking (Bukhner
et al., 1990).

B. Prospects for possible future experiments

There are currently no large-scale projects to search for
0ν2EC. However, further research (corrections of atomic mass
values, discovery of new excited levels) may lead to the
identification of nuclides with favorable conditions for the
resonant process. In addition, detection of the 0ν2EC process,
along with observation of 0ν2β− decay in different nuclei [see
the discussion by Giuliani, Danevich, and Tretyak (2018)],
will be requested if 0ν2β− decay in one nuclide is registered.
Furthermore, the light neutrino exchange mechanism is not
unique. The investigations of ECβþ and 2βþ decay might be
one of the tools for identifying the mechanism of the decay,
whether it is mediated by light neutrino mass or right-handed
current admixture in a weak interaction (Hirsch et al., 1994).
Here we examine whether high sensitivity 0ν2EC experiments
are possible in principle.
One can estimate a sensitivity of possible large-scale 2EC

experiments assuming the performance of the most advanced
2β− experiments. For instance, both the GERDA and
Majorana 76Ge 2β experiments achieve a background level
of ∼10−3 counts=ðyr keV kgÞ in the region of interest ∼2 MeV
(Elliott et al., 2017; Agostini et al., 2018). Assuming the use
of 100 kg of a highly radiopure isotopically enriched material,
HPGe detectors with a mass of 100 kg, an energy resolution
(full width at half maximum) of 3 keV, a detection efficiency
of ∼5%, and a measurement time of 5 yr, one can get an
estimation of the experimental sensitivity of approximately
limT1=2 ∼ ð4 − 9Þ × 1025 yr. Moreover, there are plans for a
ton-scale experiment with HPGe detectors Abgrall et al.
(2017) that could further improve the sensitivity.
The bolometric detectors, thanks to their excellent energy

resolution and the possibility of realizing the calorimetric
approach with detectors having different chemical formulas,
seem to offer a promising approach in the search for resonant
2EC. Using the level of background estimated by the CUORE
Collaboration ∼0.004 counts=ðyr keV kgÞ (Alessandria et al.,
2012), a mass of isotope of 100 kg [embedded in highly
radiopure crystal scintillators (Danevich and Tretyak, 2018)]
and a detection efficiency of around 10% (e.g., in a peak near
Qββ of 106Cd), one can get an estimation of the experimental
sensitivity of approximately limT1=2 ∼ 4 × 1025 yr for a 5 yr
experiment.
We emphasize one more advantage of possible large-scale

0ν2EC experiments over 0ν2β− searches. In most of the
0ν2EC processes closest to resonant ones (see Tables XI
and XII), the energy of γ quanta expected in the decays is
many times larger than the energy of the x-ray quanta emitted
in the allowed 2ν2EC. For instance, in the case of 0ν2EC
decay of 156Dy to the 0þ 1988.5 keV excited level of 156Gd γ
quanta with energy 1899.5 keV are expected, while energy of
the x-ray quanta in the 2νLL process in 156Dy should be within
7.2–8.4 keV (the binding energies on the L1, L2, and L3 shells
of gadolinium atom). Thus, the background due to the 2ν2EC
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mode in an experiment to search for 0ν2EC decay to excited
levels with energy much higher than the energy of x-ray
quanta emitted in the 2ν2EC decay will never play a role in
practice in contrast to the 0ν2β− experiments where back-
ground caused by the 2ν mode becomes dominant due to
poor energy resolution (scintillation and some gaseous detec-
tors) (Tretyak and Zdesenko, 1995) or time resolution (low-
temperature bolometers) (Chernyak et al., 2012). However,
for the cases of the g.s. to g.s. resonant transitions (e.g., in
152Gd), a small energy release [Q2ECð152GdÞ ¼ 55.7 keVÞ]
makes separation between the effect searched for and the
allowed 2νKL process rather problematic practically.

C. Neutrinoless 2EC with radioactive nuclides

Since there is no clearly identified “ideal nucleus” to find a
resonant 2EC among stable (or long-lived) nuclei, it makes
sense to consider experiments with radioactive nuclei. Using a
few kilograms of a radioactive material looks challenging but
may be possible by taking into account previous experience
with the 51Cr source for the GALLEX solar neutrino experi-
ment (Cribier et al., 1996) or the already under way BEST
sterile neutrino experiment (Barinov et al., 2019). Possibilities
of large amounts of radioactive isotopes production for 2EC
experiments are discussed in Sec. VII.C.
The most realistic approach to search for 0ν2EC decay of

radioactive isotopes is γ spectrometry. For this purpose one
could use a low-background HPGe-detector array and samples
of radioactive material as a source. The isotope should be
producible in an amount of tens of kilograms, should not
cause γ background in the region of interest, and the half-life
of the isotope relative to the ordinary decay channel should be
long enough to carry out several years of measurements and to
avoid thermal destruction of the sample. In the most favorable
case the main decay channel of the isotope is low-energy β
(EC) or α decay without γ-ray emission. The analysis
performed by Tretyak et al. (2005) showed that, despite the
high energy of the 2β− decay of some radioactive nuclei (and
therefore much faster 0ν2β− decay), realization of a high
sensitivity experiment will be limited mainly by heat release in
the detector. However, while the problem is important in the
calorimetry approach requested by 2β− experiments, it
becomes less troublesome in the search for 0ν2EC processes
by γ spectrometry. Nevertheless, taking into account current
rather problematic possibilities for production of long-lived
radionuclides in large amounts and experimental challenges in
ultralow-background measurements with radioactive samples,
this approach is still far from practically realized.

D. Summary

To conclude, the highest up-to-date sensitivity to the 0ν2EC
decay of approximately lim T1=2 ∼ 1021–1022 yr is achieved
using gaseous (78Kr), scintillation (106Cd), low-temperature
bolometric (40Ca) detectors, γ spectrometry with HPGe
detectors (36Ar, 58Ni, 96Ru, 112Sn), and geochemical methods
(130Ba, 132Ba). Observation of the allowed two-neutrino mode
of 2EC decay is claimed for only three nuclides: 78Kr, 124Xe,
and 130Ba. However, the 2ν2EC processes in 78Kr and 124Xe

were detected in a single experiment for each nuclide. Both
claims should be confirmed in independent investigations. As
for the geochemical result for 130Ba, it needs to be approved by
detection in direct counting experiments. The sensitivity of the
0ν2EC experiments is 3 to 4 orders of magnitude lower than
that of themost sensitive 0ν2β− experiments. Themain reasons
are in general lower sensitivity of the 0ν2EC experiments to the
absolute neutrino mass (with a similar half-life sensitivity), in
most cases extremely low isotopic concentration and limited
capabilities of the isotopes of interest enrichment, a more
complicated 0ν2EC radiative effect signature (which results in
a lower detection efficiency to the 0ν2EC process), and a
typically smaller energy release than those for 0ν2β− decays,
while the smaller energy of the sought-out effect complicates
suppression of the radioactive background.
However, the situation might be changed in the case of

resonant enhancement of the 0ν2EC. In this case γ spectrom-
etry of external isotopically enriched source with the help of
HPGe diodes, low-temperature bolometers look the most
promising detection techniques for possible large-scale
experiments to search for the resonant 0ν2EC process. In
addition to the stable nuclide candidates, searches for the
0ν2EC process might be considered in radioactive nuclides
with a reasonably long half-life and relevant decay mode that
does not interfere with the 0ν2EC effect. The most realistic
approach in this case could be γ spectrometry with HPGe
detectors. However, realization of a high sensitivity experi-
ment with a radioactive isotope is limited by practical
difficulties of its production in large amounts.

VII. PRECISE DETERMINATION OF 2EC DECAY
ENERGIES

The probability of 0ν2EC decay is in general substantially
lower than that of 0ν2β decay. The only process that can
increase the probability of 0ν2EC decay and thus make it
attractive for its experimental search is its resonant enhance-
ment. Assuming that a resonantly enhanced 0ν2EC transition
is found, its use in experiments on the determination of the
neutrino type can provide some advantages relative to the
investigation of neutrinoless double β− decay. First, there
might be a variety of excited nuclear states with different
low spin values and different parities in one nuclide to
which the double-electron-capture transition can be resonantly
enhanced, resulting in relatively short partial half-lives.
Second, no essential reaction induced background from the
two-neutrino mode is expected in the case of ground-state-to-
ground-state transitions. For two nuclides connected by a
transition between the nuclear ground states only, the neu-
trinoless mode dominates since the two-neutrino transition is
strongly suppressed by phase space: no energy is left for the
neutrinos to carry away. Thus, in the past ten years experi-
menters have focused on the search for nuclides in which such
resonantly enhanced 0ν2EC can take place.

A. Basics of high-precision Penning-trap mass spectrometry

To determine the degree of resonant enhancement of
the 0ν2EC transitions, their Q values must be measured with
an uncertainty of approximately 100 eV. The Q value is the
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mass difference between the initial and final states of the
transition

Q=c2 ¼ Mi −Mf ¼ MfðMi=Mf − 1Þ ¼ MfðR − 1Þ; ð7:1Þ

whereMi andMf are the atomic masses of the initial and final
states, respectively, and R ¼ Mi=Mf is their ratio. An uncer-
tainty δQ of the Q-value determination is given by

δQ¼Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
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; R> 1; ð7:2Þ

where δMf and δR are the uncertainties of the mass of the final
state and the mass ratio, respectively. Thus, a determination
of the Q value with an uncertainty of 100 eV implies the
measurement of the mass ratio R with an uncertainty of
approximately 10−9.
The only current technique capable of providing such a low

uncertainty for a large variety of stable and radioactive
nuclides is considered to be high-precision Penning-trap mass
spectrometry (PTMS) (Blaum, Dilling, and Nörtershäuser,
2013; Myers, 2013). This technique is superior in achievable
sensitivity, accuracy, and resolving power to all other mass-
measurement methods due to the very idea that forms the basis
of a Penning trap: one confines a single ion with mass M and
electrical charge q to a minute volume by the superposition
of an extremely stable and strong static homogeneous mag-
netic field B and weak static quadrupole electric potential. In
such a field configuration a charged particle performs a
complex periodic motion that is considered to be a product
of three circular motions with stable eigenfrequencies,
namely, cyclotron, magnetron, and axial motions with the
frequencies νþ, ν−, and νz, respectively; see Fig. 15 (Brown
and Gabrielse, 1986).
A certain combination of these eigenfrequencies yields the

so-called free cyclotron frequency

νc ¼
1

2π

q
M

B; ð7:3Þ

i.e., the frequency of an ion with charge-to-mass ratio q=M in
a homogeneous magnetic field B. A determination of the mass
of a charged particle via a measurement of its free cyclotron
frequency, the most precisely measurable quantity in physics,
is a trick that sets the Penning trap beyond any other mass-
measurement technique. The measurement of the mass ratio R
reduces to the measurement of the ratio R ¼ νfc=νic of the
cyclotron frequencies νfc and νic of the final and initial states of
the transition, respectively.
Most Penning-trap facilities are built for mass

measurements on radioactive nuclides and employ for the
measurement of the cyclotron frequency the so-called time-
of-flight ion-cyclotron-resonance technique (TOF-ICR)
(Gräff, Kalinowsky, and Traut, 1980; König et al., 1995).
A key component of this method is a microchannel-plate
(MCP) detector, which is placed on the axis of the Penning
trap (direction z⃗; see Fig. 17) in a region with low magnetic
field. The MCP detector serves as a counter for single ions.
The cyclotron frequency is determined from the measure-
ment of the TOF of the ion passing the strong gradient of the
magnetic field between the Penning trap and the MCP
detector (Fig. 16).
An ion in a magnetic-field gradient is subject to a force that

acts in direction z⃗ and is given by

F⃗ ¼ −
Er

B0

·
∂B
∂z · z⃗; ð7:4Þ

where Er is the ion’s radial kinetic energy and B0 is the
magnetic field in the trap. The ion’s time of flight between the
trap located at zero position and the detector at zdet can thus be
determined by

TðErÞ ¼
Z

zdet

0

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

2½E0 − qVðzÞ − μðErÞBðzÞ�

s
; ð7:5Þ

where E0 is the total initial energy of the ion, VðzÞ and BðzÞ
are the electric and magnetic fields along the ion’s path

FIG. 15. Motion of an ion in a Penning trap. It can be considered
a combination of three independent eigenmotions, cyclotron and
magnetron motions in the plane orthogonal to the magnetic-field
lines, and axial motion along the magnetic-field line.

FIG. 16. Basic principle of the TOF-ICR technique. The ions are
ejected from the trap and sent to the detector through a strong
gradient of the magnetic field. The time of flight of the ions
depends on their orbital magnetic moment in the trap and is a
function of the ion’s cyclotron frequency. For details see the text.
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between the trap and the MCP detector, and μðErÞ is the ion’s
orbital magnetic moment in the Penning trap.
The orbital magnetic moment of the ion in the trap and

hence its time of flight can be manipulated by applying a
quadrupolar radio-frequency (rf) field of certain temporal
profile at a frequency near the ion’s cyclotron frequency in the
trap. By varying the frequency of the rf field of duration Trf ,
one obtains the time of flight versus frequency of the rf field as
shown in Fig. 17(a) for a one-pulse rf field (König et al., 1995)
and in Fig. 17(b) for a two-pulse rf field (George et al., 2007;
George, Blaum et al., 2007; Kretzschmar, 2007).
The two-pulse method (two-pulse Ramsey) is usually the

method of choice since it provides the highest precision for the
determination of the cyclotron frequency νc due to a large
number of pronounced periodic minima in the time-of-flight
line shape. The cyclotron frequency of singly charged ions of
mass 100 u in a magnetic field of 7 T is approximately 106 Hz.
A half-hour measurement of the cyclotron frequency with a rf-
pulse duration of 2 s and a two-pulse Ramsey configuration
allows for a determination of the cyclotron frequency with a
relative uncertainty of about 5 × 10−9 to 10−8. The final
achievable uncertainty of the frequency-ratio determination is
usually defined by the instability of the magnetic field in time
(Droese et al., 2011) and amounts to approximately 10−9 in
experiments that employ the TOF-ICR detection technique.
The novel phase-image ion-cyclotron-resonance (PI-ICR)

technique was invented (Eliseev et al., 2013, 2014) for on-line
facilities like SHIPTRAP. With this method the measurement
of the ion-cyclotron frequency is based on the projection of the
ion position in the trap onto a position-sensitive detector. This
allows one to monitor the time evolution of the ion motion and
thus measure the trap-motion frequencies of the ion with
subsequent determination of the ion free cyclotron frequency.
Compared to the conventional TOF-ICR technique, the

PI-ICR method offers a gain in precision and resolving power
of approximately 5 and 50, respectively. This has made it
feasible to carry out measurements of mass ratios of long-lived
nuclides with an uncertainty of just a few tens of eVat on-line
Penning-trap facilities (Nesterenko et al., 2014; Eliseev et al.,
2015; Karthein et al., 2019).

B. Decay energies of 2EC transitions in virtually
stable nuclides

Since 12 out of the 19 most promising nuclide pairs from
Tables VI and VII have been addressed with SHIPTRAP
(Block et al., 2007) and three pairs have been investigated
with the mass spectrometers JYFLTRAP (Kolhinen et al.,
2004) and TRIGATRAP (Ketelaer et al., 2008) and the Florida
State University Penning trap (Shi, Redshaw, and Myers,
2005), which are in many aspects similar to SHIPTRAP,
the experiments on the determination of the Q values are
described here by the example of the SHIPTRAP mass
spectrometer.
The SHIPTRAP facility has been built for experiments on

transuranium nuclides produced in fusion-evaporation reac-
tions at GSI, Darmstadt, Germany. A detailed description of
the entire facility was given by Block et al. (2007). Here only
off-line SHIPTRAP (the part relevant to the measurements of
the Q values) is described (Fig. 18).
The nuclides of interest are virtually stable and can be

purchased in sufficient amounts in different chemical forms.
For production of singly charged ions of these nuclides a laser-
ablation ion source was used (Chaudhuri et al., 2007).
For this, a few milligrams of the nuclide of interest were
shaped into a 5 × 5 mm2 solid target on a rotatable holder.
These targets were then irradiated with short laser pulses.
The frequency-doubled Nd:yttrium-aluminum-garnet laser
(532 nm) has a pulse duration of 3–5 ns, a pulse energy of
4–12 mJ, and a diameter of the laser beam on the target of less
than 1 mm. The material is ionized by laser induced
desorption, fragmentation, and ionization. A series of electro-
static electrodes transport the ions from the ion source toward
the Penning-trap mass spectrometer.
The Penning-trap mass spectrometer has two cylindrical

Penning traps, the preparation trap (PT) and measurement trap
(MT), placed in a magnetic field of 7 T created by a super-
conducting magnet. The PT separates the ions of interest from
unwanted ions by employing the mass-selective buffer gas
cooling technique (Savard et al., 1991). From the PT only the
ions of interest pass into theMT,where their cyclotron frequency
is measured with the previously described TOF-ICR technique.

TABLE VI. Parameters of the three most promising 2EC transitions between nuclear ground states whose Q values have been precisely
measured with SHIPTRAP.

2EC transition

152Gd → 152Sm
(Eliseev et al., 2011b)

164Er → 164Dy
(Eliseev, Novikov, and Blaum, 2012)

180W → 180Hf
(Droese et al., 2012)

Electron orbitals KL1 L1L1 KK
Q2EC ðoldÞ ðkeVÞ 54.6(35) 23.3(39) 144.4(45)
Δ ðoldÞ ðkeVÞ 0.27(350) 5.05(390) 12.4(45)
Q2EC ðnewÞ ðkeVÞ 55.70(18) 25.07(12) 143.20(27)
Δ ðnewÞ ðkeVÞ 0.83(18) 6.82(12) 11.24(27)

FIG. 17. The line shape of the time of flight vs the (a) one-pulse
and (b) two-pulse (Ramsey) rf field of duration Trf , respectively.
For details see the text.
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The ratio of the cyclotron frequencies of the initial and final
nuclides of the transition is obtained through a measurement
of the two cyclotron frequencies alternately, as schematically
depicted in Fig. 19 (left panel).
In this case, the ratio that corresponds to measurement time

tk [see Fig. 19 (left panel)] is made up of the frequency of the
mother nuclide measured at time tk and the frequency of the
daughter nuclide that is obtained by linear interpolation of
the frequencies of the daughter nuclide measured at times tk−1

and tkþ1. The measurement time of one ratio point usually
does not exceed 1 h and is measured with an uncertainty of
better than 10−8. Thus, a measurement campaign of a few days
results in a determination of the frequency ratio with the
required uncertainty of about 10−9, as shown in Fig. 19 (right
panel) using the example of double-electron capture in 156Dy
(Eliseev et al., 2011a). The corresponding uncertainty of the Q
value is about 100 eV. The results obtained in this measurement
campaign were summarized by Eliseev, Novikov, and Blaum

TABLE VII. 2EC transitions to nuclear excited states that are of interest in the search for the 0ν2EC process and for which Q2EC values have
been precisely measured with Penning traps.

0ν2EC transition E� ðkeVÞ Jπf
Electron
orbitals Q2EC ðkeVÞ Δ ðkeVÞ Reference

74Se → 74Ge 1204.205(7) 2þ L2L3 1209.169(49) 2.50(5) Kolhinen et al. (2010)
1209.240(7) 2.57(1) Mount, Redshaw, and Myers

(2010)
78Kr → 78Se 2838.49(7) 2þ L1M4 2847.75(27) 7.55(28) Bustabad et al. (2013)

L3M2 7.66(28)
96Ru → 96Mo 2700.21(6) 2þ L2L2 2714.51(13) 9.05(14) Eliseev, Nesterenko et al. (2011)
102Pd → 102Ru 1103.047(13) 2þ KL3 1203.27(36) 75.26(36) Goncharov et al. (2011)
106Cd → 106Pd 2748.2(4) ð2; 3Þ− KL3 2775.39(10) 0.33(41) Goncharov et al. (2011)
112Sn → 112Cd 1871.00(19) 0þ KK 1919.82(16) 4.50(25) Rahaman et al. (2009)
120Te → 120Sn - 1714.81(125) Scielzo et al. (2009)
124Xe → 124Te 2790.41(9) 0þ − 4þ KK 2856.82(13) 1.96(16) Nesterenko et al. (2012)
130Ba → 130Xe 2544.43(8) 0þ KK 2623.71(26) 10.15(26) Nesterenko et al. (2012)
136Ce → 136Ba 2315.32(7) 0þ KK 2378.53(27) 11.67(28) Kolhinen et al. (2011)
144Sm → 144Nd 1560.920(13) 2þ KL3 1782.59(87) 171.89(87) Goncharov et al. (2011)
156Dy → 156Gd 1946.375(6) 1− KL1 2005.95(10) 0.75(10) Eliseev et al. (2011a)

1952.385(7) 0− KM1 1.37(10)
1988.5(2) 0þ L1L1 0.54(24)
2003.749(5) 2þ M1N3 0.04(10)

162Er → 162Dy 1782.68(9) 2þ KL3 1846.95(30) 2.69(30) Eliseev, Nesterenko et al. (2011)
168Yb → 168Er 1403.7357(23) 2− M2M2 1409.27(25) 1.52(25) Eliseev, Nesterenko et al. (2011)
184Os → 184W 1322.152(22) 0þ KK 1453.68(58) 8.89(58) Smorra et al. (2012)
190Pt → 190Os 1326.9(5) 1,2 KN1 1401.57(47) 0.14(69) Eibach et al. (2016)

KN2 0.25(69)
KN3 0.34(69)
KN4 0.51(69)

FIG. 18. Sketch of the off-line SHIPTRAP facility. The ions produced with a laser ablation are guided by ion transport optics toward
the Penning traps. After the mass-selective cooling and centering of the ions in the preparation trap, they are sent into the measurement
trap, where their cyclotron frequency is measured with the TOF-ICR technique. For details see the text.

K. Blaum et al.: Neutrinoless double-electron capture

Rev. Mod. Phys., Vol. 92, No. 4, October–December 2020 045007-46



(2012) and are included in Tables VI and VII. The choice of
nuclide pairs for measurements was made from an analysis of
data for all stable nuclides, which from the energy balance can
undergo double-electron capture. This dataset is presented in
Table V. Presented there, in addition to energy, are other
parameters that allow one to judge the proximity of a particular
level to the resonant state, leading to an increase in the probability
of double capture. These parameters include the energy gap Δ
and the width Γ of the states of electrons undergoing capture, on
which the resonance gain factorR depends. The most promising
cases were selected for the experiments, the results of which are
given in Tables VI and VII.

C. Prospects for measurements of decay energies in radioactive
nuclides

The use of radioactive nuclides in the search for 2EC
transitions was first proposed by Berlovich and Novikov
(1970). Of particular interest were nuclides that are situated far
from the valley of beta stability. They can undergo double-
electron capture with a much higher decay energy than the
nuclides along the valley of beta stability. Since the probability
of double-electron capture exhibits a strong dependence on the
Q2EC value, the half-lives of such nuclides with regard to
double-electron capture can be short enough to be measured.
As in the case of virtually stable nuclides, here one could
search for resonantly enhanced 0ν2EC by measuring theQ2EC
values of promising 2EC transitions.
The main decay mode of such nuclides must not hamper the

search for double-electron capture. In other words, it should
be either alpha decay to a nuclear ground state or electron
capture with a low Q value. Furthermore, from a practical
point of view, the half-lives of such nuclides should be at least
a few years. The most promising near-resonant nuclides that
fulfill these criteria are listed in Table VIII6; their specific
0ν2EC data are given in Table XIII.

Provided that a resonantly enhanced transition has been
found in these nuclides by means of Penning-trap mass
spectrometry, a suitable mechanism will have to be found
for a production of macroquantities of these nuclides.
Spalation or fragmentation reactions with high-energy par-
ticles and a fusion with heavy ions do not allow the production
of a quantity that would be sufficient for a large-scale
experiment in search of 0ν2EC; see Table IX.7 A more
promising production mechanism is an irradiation of samples
with neutrons in a reactor. Only relatively short-lived nuclides
can be produced in this manner; see Table X. To calculate the
production yields, the mass of the irradiated sample was taken
equal to 1 mol, and the neutron flux was 1015 n=ðcm2 sÞ.
Thus, in principle a production of sufficient amount of 169Yb
and 175Hf is feasible. However, since these nuclides are too
short lived, their handling might be problematic.

VIII. NORMALIZED HALF-LIVES OF NEAR-RESONANT
NUCLIDES

In this section, estimates of the 0ν2EC half-lives of nuclei
closest to the resonance condition are presented. Over the past
ten years, great progress has been made due to accurate
measurements ofQ2EC values, which made it possible to clarify
whether the resonance condition for the prospective nuclides is
satisfied; see Sec. VII. TheQ2EC values of the identified earlier
prospective nuclides have now been measured.

A. Decays of virtually stable nuclides

New estimates of the half-lives, taking the recent Q-value
measurements into account, are presented in Tables XI
and XII. In view of the considerable variance of the NME
values for various nuclides (Table IV) and to not mix distinct
physical effects, the normalized half-lives T̃1=2 with NME ¼ 3

are provided. In the following we focus mainly on the light
Marjorana neutrino exchange mechanism of Fig. 3(a).
Astrophysical restrictions on the sum of the diagonal

neutrino masses obtained by the Planck Collaboration from

FIG. 19. Illustration of the principle of an alternate measurement of the cyclotron frequencies of two nuclides (left panel) (for details
see text), which results in a determination of their ratio (right panel) (using the example of the frequency-ratio measurements of 156Gd
and 156Dy). Left panel: filled squares and filled circles represent the single measurements of the frequencies of the mother and daughter
nuclides, respectively. The hatched circle is the value obtained from the linear interpolation to the time tk of the frequencies measured at
times tk−1 and tkþ1. Right panel: central and upper and lower lines represent the weighted mean frequency ratio and the error of the
determination of the weighted mean frequency ratio, respectively.

6Center for Nuclear Studies, Department of Physics, The George
Washington University. Data Analysis Center: http://www.nndc.bnl
.gov/. 7See http://isolde.web.cern.ch.
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TABLE IX. Estimated yields for the production of the radioactive nuclides of interest for the search for neutrinoless 2EC in spalation or
fragmentation reactions with high-energy particles and fusion with heavy ions.

Mother ISOLDE=CERN yield=atoms yield=atoms Max. counts
nuclide counts=ions=μC (spallation, 3 months) (fusion with 48Ca, 3 months) jλYj2EC=yr−1
148Gd 6 × 108 ≈1016 Too small
150Gd 4 × 108 ≈1016 ≈1013 ≈10−7
154Dy 8 × 109 ≈1017 ≈1013 ≈10−6
194Hg 7 × 109 ≈1017 ≈1013
202Pb 107 ≈1014 Too small ≈10−9

TABLE X. Parameters of relatively short-lived nuclides with near-resonant transitions for the search for 0ν2EC, which can be produced in a
reactor. The QEC and Q2EC values are in keV units (Wang et al., 2017), E� are in keV units, and Jπi are from the database of the Brookhaven
National Laboratory.

Nuclide Jπi Texp
1=2 QEC Q2EC

E�, possible relevant levels
in daughter nuclide

jλYjEC=y−1
(3 months in reactor)

93Mo 5=2þ ð4.0� 0.8Þ × 103 yr 405.8 (15) 315.0 (5) 266.8 (3=2þ) 10−3
113Sn 1=2þ 115.09� 0.03 d 1039.0 (16) 715.2 (16) 680.52 (3=2þ), 708.57 (5=2þ) 3 × 10−3
145Sm 7=2− 340� 3 d 616.2 (25) 780.6 (9) 748.275 (9=2−) 10−2
169Yb 7=2− 32.018� 0.005 d 897.6 (11) 545.5 (3) 10
175Hf 5=2ð−Þ 70� 2 d 683.9 (20) 213.9 (23) 4

TABLE VIII. Radioactive nuclides with half-lives T1=2 > 1 yr, which might be of interest for 0ν2EC.Qα and Tα
1=2 are theQ value and half-life

of the α-decay mode, respectively. The Q2EC, QEC, and Qα values and TEC
1=2 are from Wang et al. (2017), and T1=2 are from the database of

Brookhaven National Laboratory.

Mother T1=2 Q2EC T2EC
1=2

a QEC TEC
1=2 Qα Tα

1=2
nuclide (yr) (keV) (yr) (keV) (yr) (keV) (yr)
148Gd 71.1� 1.2 3066.9(9) 1025−33 30(10) 103 3271 70
150Gd ð1.79� 0.08Þ × 106 1287(6) 1023−33 � � � � � � 2807 ð3.00� 0.15Þ × 106
154Dy ð3.0� 1.5Þ × 106 3312(7) 1023−30 � � � � � � 2945 3 × 106
194Hg 444� 77 2576(3) 1025−31 28(4) 103 2698 ∼1020a
202Pb ð5.25� 0.28Þ × 104 1405(4) 1022−32 40(4) 102 2589 ∼1023b

aAccording to Sec. VIII.
bValues for alpha decay estimated with the Geiger-Nuttal approach (Brown, 1992).

TABLE XI. The 0ν2EC processes closest to the resonant ones. The normalized half-lives T̃1=2 take newly measuredQ2EC values into account.
The first column reports the natural isotopic abundance (ι) of the parent nuclides. The spin and parity of the daughter nuclides are given in
column 3. If the spin or parity are unknown, their suggested or assumed values are given in round or square brackets, respectively. Column 4
reports the excitation energies of daughter nuclides together with the experimental errors. Column 5 lists the degeneracy parameter of the two
atoms Δ ¼ M��

A;Z−2 −MA;Z, including the excitation energy of the electron shell; the errors indicate the experimental uncertainty in the Q2EC

values. The quantum numbers of the electron vacancies α and β are given in the next two columns, where n is the principal quantum number, j is
the total angular momentum, and l is the orbital angular momentum. Columns 8, 9, and 10 enumerate the energies of the vacancies ϵ�α and ϵ�β and
the energy shift Δϵ�αβ due to the Coulomb interaction, relativistic, and collective electron shell effects. Column 11 presents the widths of the
excited electron shells. The minimum and maximum normalized half-lives (in years) corresponding to the 99% C.L. interval determined by the
uncertainty in the degeneracy parameter Δ are presented in the last two columns. The masses, energies, and widths are given in keV.

ι Transition Jπf M�
A;Z−2−MA;Z−2 M��

A;Z−2 −MA;Z ðn2jlÞα ðn2jlÞβ ϵ�α ϵ�β Δϵ�αβ Γαβ T̃min
1=2 T̃max

1=2

5.52% 96
44Ru→

96
42Mo�� 0þ 2742� 1 28.1� 0.13 310 410 0.50 0.06 0.02 9.5 × 10−3 1.0 × 1037 1.3 × 1037

1.25% 106
48 Cd→

106
46 Pd

�� ½0þ� 2737� 1 11.0� 0.10 110 110 24.35 24.35 0.72 1.3 × 10−2 8 × 1031 2 × 1032

−10.3� 0.10 110 210 24.35 3.60 0.18 1.0 × 10−2 3 × 1032 8 × 1032

0.095% 124
54 Xe→

124
52 Te

�� ½0þ� 2853.2� 0.6 2.5� 0.12 210 310 4.94 1.01 0.06 1.2 × 10−2 5 × 1031 1 × 1033

1.6� 0.12 210 410 4.94 0.17 0.02 4.6 × 10−3 2 × 1029 3 × 1035

0.185% 136
58 Ce→

136
56 Ba

�� 0þ 2315.32�0.07 a
12.6� 0.27 110 110 37.44 37.44 0.93 2.6 × 10−2 2 × 1031 2 × 1031

½0þ� 2349.5� 0.5 46.7� 0.27 110 110 37.44 37.44 0.93 2.6 × 10−2 2 × 1032 2 × 1032

14.6� 0.27 110 210 37.44 5.99 0.23 1.5 × 10−2 1 × 1032 2 × 1032

(Table continued)
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the study of cosmic microwave background anisotropies
yield

P
mν < 120 meV (Aghanim et al., 2018). The best

restrictions on the effective electron neutrino Majorana
mass in double-beta-decay experiments were obtained by
the KamLAND-Zen Collaboration (Gando et al., 2016):
jmββj < 61 − 165 meV for commonly used NMEs and the
unquenched axial-vector coupling gA ¼ 1.27. Exotic scalar
interactions modify the mass of neutrinos in nuclear matter
(Kovalenko, Krivoruchenko, and Šimkovic, 2014), so the
effective electron neutrino Majorana mass in 0ν2β− decay
and 0ν2EC decay can differ from that derived from astrophysi-
cal data and tritium beta decay.
The decay half-life is determined by the decay width:

T0ν2EC
1=2 ¼ ln 2=Γi, where Γi is given by Eq. (3.6), with Mi ¼

MA;Z and Mf ¼ M��
A;Z−2; Γf ≡ Γαβ is the decay width of the

daughter atom with vacancies of electrons in the states α
and β. The amplitude Vαβ entering Γi is defined by Eq. (2.14);
for the light Majorana neutrino exchange mechanism, Vαβ

simplifies to Eq. (3.21).
Assuming that the light Majorana neutrino exchange

mechanism is dominant, T0ν2EC
1=2 scales with powers of the

overlap factor KZ, the neutrino mass mββ, the axial-vector
coupling gA, and the nuclear matrix element M2EC. The decay
half-life can be written as follows:

T0ν2EC
1=2 ¼ K−2

Z

�
1.27
gA

�
4
�
100 meV
jmββj

�
2
�

3

jM2ECj
�

2

T̃1=2: ð8:1Þ

The normalized half-life T̃1=2 does not depend on KZ,mββ, gA,
or M2EC. Various schemes for calculating KZ were discussed

TABLE XI. (Continued)

ι Transition Jπf M�
A;Z−2−MA;Z−2 M��

A;Z−2 −MA;Z ðn2jlÞα ðn2jlÞβ ϵ�α ϵ�β Δϵ�αβ Γαβ T̃min
1=2 T̃max

1=2

9.7� 0.27 110 310 37.44 1.29 0.08 2.4 × 10−2 2 × 1032 3 × 1032

ð1þ; 2þÞ 2392.1� 0.6 20.9� 0.27 210 310 5.99 1.29 0.05 1.3 × 10−2 3 × 1033 5 × 1033

ð1þ; 2þÞ 2399.87� 0.05 64.9� 0.27 110 210 37.44 5.99 0.19 1.5 × 10−2 1 × 1033 1 × 1033

0.20% 152
64 Gd→

152
62 Sm

�� 0þ 0 39.0� 0.18 110 110 46.83 46.83 1.09 4.0 × 10−2 5 × 1031 5 × 1031

−0.9� 0.18 110 210 46.83 7.74 0.28 2.3 × 10−2 3 × 1028 3 × 1029

−1.3� 0.18 110 211 46.83 7.31 0.33 2.3 × 10−2 1 × 1031 5 × 1031

−7.1� 0.18 110 310 46.83 1.72 0.09 3.2 × 10−2 3 × 1031 3 × 1031

−8.5� 0.18 110 410 46.83 0.35 0.04 2.4 × 10−2 2 × 1032 3 × 1032

0.06% 156
66 Dy→

156
64 Gd

�� 1− 1946.375�0.006 −1.1� 0.10 110 211 50.24 7.93 0.33 2.6 × 10−2 5 × 1029 2 × 1030

−7.6� 0.10 110 311 50.24 1.69 0.10 2.8 × 10−2 2 × 1032 2 × 1032

0− 1952.385� 0.007 5.3� 0.10 110 210 50.24 8.38 0.29 2.6 × 10−2 8 × 1031 1 × 1032

−1.4� 0.10 110 310 50.24 1.88 0.10 3.5 × 10−2 1 × 1031 3 × 1031

1− 1962.037� 0.012 14.5� 0.10 110 211 50.24 7.93 0.33 2.6 × 10−2 2 × 1032 2 × 1032

8.1� 0.10 110 311 50.24 1.69 0.10 2.8 × 10−2 2 × 1032 2 × 1032

1þ 1965.950� 0.004 18.8� 0.10 110 210 50.24 8.38 0.23 2.6 × 10−2 1 × 1031 1 × 1031

12.2� 0.10 110 310 50.24 1.88 0.08 3.5 × 10−2 2 × 1031 2 × 1031

10.6� 0.10 110 410 50.24 0.38 0.03 2.7 × 10−2 8 × 1031 8 × 1031

½0þ� 1970.2� 0.8 65.8� 0.10 110 110 50.24 50.24 1.14 4.5 × 10−2 8 × 1031 8 × 1031

23.1� 0.10 110 210 50.24 8.38 0.29 2.6 × 10−2 5 × 1031 8 × 1031

16.4� 0.10 110 310 50.24 1.88 0.10 3.5 × 10−2 8 × 1031 1 × 1032

0þ 1988.5� 0.2 a
84.1� 0.10 110 110 50.24 50.24 1.14 4.5 × 10−2 1 × 1032 1 × 1032

41.4� 0.10 110 210 50.24 8.38 0.29 2.6 × 10−2 2 × 1032 2 × 1032

−0.6� 0.10 210 210 8.38 8.38 0.19 7.6 × 10−3 8 × 1025 8 × 1030

−1.1� 0.10 210 211 8.38 7.93 0.14 7.7 × 10−3 8 × 1031 8 × 1032

0þ 2026.664� 0.006 79.5� 0.10 110 210 50.24 8.38 0.23 2.6 × 10−2 2 × 1032 2 × 1032

0.14% 168
70 Yb→

168
68 Er

�� 1− 1358.898� 0.005 16.7� 0.25 110 211 57.49 9.26 0.36 3.3 × 10−2 8 × 1031 1 × 1032

9.2� 0.25 110 311 57.49 2.01 0.11 3.5 × 10−2 8 × 1031 1 × 1032

7.5� 0.25 110 411 57.49 0.37 0.04 3.4 × 10−2 2 × 1032 3 × 1032

0þ 1422.10� 0.03 129.0� 0.25 110 110 57.49 57.49 1.25 5.7 × 10−2 1 × 1032 2 × 1032

0.13% 180
74 W→180

72 Hf
� 0þ 0 −11.2� 0.27 110 110 65.35 65.35 1.36 7.2 × 10−2 5 × 1029 5 × 1029

−66.2� 0.27 110 210 65.35 11.27 0.36 4.2 × 10−2 1 × 1032 1 × 1032

0.02% 184
76 Os→

184
74 W

�� ð0Þþ 1322.152�0.022 a
8.8� 0.58 110 110 69.53 69.53 1.42 8.0 × 10−2 2 × 1029 3 × 1029

−49.6� 0.58 110 210 69.53 12.10 0.37 4.6 × 10−2 3 × 1031 5 × 1031

0.014% 190
78 Pt→

190
76 Os

�� ð0; 1; 2Þþ 1382.4� 0.2 a
7.0� 0.47 210 210 12.97 12.97 0.24 1.4 × 10−2 2 × 1031 33 × 1031

−3.0� 0.47 210 310 12.97 3.05 0.11 2.2 × 10−2 2 × 1030 1 × 1031

−3.3� 0.47 210 311 12.97 2.79 0.09 1.6 × 10−2 2 × 1032 1 × 1033

−5.5� 0.47 210 410 12.97 0.65 0.05 1.5 × 10−2 8 × 1031 2 × 1032

aDecay channels with the known NMEs listed in Table IV.
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by Krivoruchenko and Tyrin (2020). The nucleon and non-
nucleon spin-isospin correlations and the renormalization
effects of the axial-vector coupling gA were discussed by
Ejiri, Suhonen, and Zuber (2019).
The value Δϵ�αβ shown in Tables XI and XII is a correction

to the two-hole excitation energy (4.37). In the lowest
approximation, Δϵ�αβ is the Coulomb interaction energy of
the holes. For the estimates reported here, the values of Δϵ�αβ
are determined empirically from Auger-electron spectroscopy,
as described in Sec. IV.B. If no experimental data are
available, Δϵ�αβ are determined from calculations using the
GRASP2K package. The calculations are performed for noble
gas atoms with the simplest electron shell structure. For the
remaining atoms with identical quantum numbers for the
holes, the interaction energy is obtained via interpolation with
a power function ϵ�αβ ∼ aZb. Tables XI and XII report the
minimum and maximum normalized values of the half-lives.
The confidence interval of the 99% probability is determined
by the uncertainty in the degeneracy parameter of the parent
and daughter atoms M��

A;Z−2 −MA;Z � 2.6σ, where σ2 ¼
ðΔQÞ2 þ ðΔE�Þ2 and ΔQ and ΔE� are the errors in the
Q2EC value and the excitation energy E� ¼ M�

A;Z−2 −MA;Z−2
of the daughter nuclide, respectively. If this interval includes
zero, then at 99% C.L. the resonance is not excluded so that
T̃min
1=2 gives the unitary limit.
In addition to the perspective nuclear pairs discussed by

Krivoruchenko et al. (2011), the Q2EC values of other nuclide
pairs were also measured. Experimental limits on the half-
lives of the 0ν2EC decays of some other nuclei were
previously known or established in recent years. These
additional cases are analyzed on the same grounds; the
normalized half-life estimates are presented in Table XII.
Decays with a minimum normalized half-life of more than

1034 yr are not listed. Tables XI and XII thus report all
interesting cases of the atoms for which Q2EC values were
measured or the experimental limits on the 0ν2EC half-
lives are available.
In the near-resonance region, one finds a group of excited

levels of 130
54 Xe

�with unknown quantum numbers. We provide
estimates for four excitation levels of 130

54 Xe
� with energies

2533.40, 2544.43, 2628.36, and 2637.50 keV of the assumed
spin parity 1þ. According to our estimates, these decays
all appear to be nonresonant. The upper and lower limits
of the normalized half-lives coincide with the accuracy under
consideration because of small errors in the excitation
energy of the daughter nucleus and the precise Q2EC value
of the pair. The same remark applies to the decays
136Ce → 136Ba��ð2399.9Þ, 156Dy→ 156Gd��ð1851.24Þ, 162Er →
162Dy��ð1745.72Þ, 180W → 180Hf�, the decay 156Dy →
156Gd��ð1988.5Þ accompanied by the KK or KL1 capture,
and some other decays.
The decay of 152Gd is not resonant at 99% C.L., but its

probability remains sufficiently high, with a normalized
half-life of 3 × 1028–3 × 1029 yr. The case of 156Dy, which
decays into an excited state of gadolinium with energy
1988.5 keV, is noteworthy. The error in the Q2EC value of
this pair is 100 eV; the resonance capture of electrons from
the L1L1 state with a normalized half-life of 8 × 1025 yr
cannot be excluded at 99% C.L. The NME for decay into
the excited level Jπ ¼ 0þ and the energy of 1851.239 keV
according to Kotila, Barea, and Iachello (2014) is equal to
0.35 (Table IV). Taking the same NME value for
1988.5 keV, one finds the half-life of 1.1 × 1028 yr, which
is even less than the half-life of 152Gd. For other cases
considered in Tables XI and XII, the minimum values of the
normalized half-life are above 1029 yr.

TABLE XII. The normalized half-lives of 0ν2EC processes not included in Table XI, but for which precise Q2EC values are known and/or
experimental constraints on the 0ν2EC-decay half-lives exist. Transitions with T̃min

1=2 > 1035 yr are not shown. Other notations are the same as in
Table XI.

ι Transition Jπf M�
A;Z−2 −MA;Z−2 M��

A;Z−2 −MA;Z ðn2jlÞα ðn2jlÞβ ϵ�α ϵ�β Δϵ�αβ Γαβ T̃min
1=2 T̃max

1=2

5.52% 96
44Ru → 96

42Mo�� ½0þ� 2712.68� 0.10a 1.6� 0.13 210 310 2.87 0.50 0.05 1.0 × 10−2 5 × 1032 2 × 1033

0þ 2742� 1 68.1� 0.13 110 110 20.00 20.00 0.64 9.0 × 10−3 1 × 1034 1 × 1034

1.25% 106
48 Cd → 106

46 Pd
�� ½0þ� 2717.59� 0.21a −8.4� 0.10 110 110 24.35 24.35 0.72 1.3 × 10−2 5 × 1031 8 × 1031

2; 3− 2748.2� 0.4 0.5� 0.10 110 231 24.35 3.17 0.18 8.3 × 10−3 2 × 1031 2 × 1036

0.97% 112
50 Sn → 112

48 Cd
�� 0þ 1871.00� 0.19 5.4� 0.16 110 110 26.71 26.71 0.76 1.5 × 10−2 1 × 1031 2 × 1031

0.11% 130
56 Ba →

130
54 Xe

� ð1þÞ 2533.4� 0.3 −50.2� 0.29 110 210 34.56 5.45 0.18 1.4 × 10−2 8 × 1032 8 × 1032

ð1þÞ 2544.43� 0.08 −39.1� 0.29 110 210 34.56 5.45 0.18 1.4 × 10−2 5 × 1032 5 × 1032

ð1þÞ 2628.360� 0.001 44.8� 0.29 110 210 34.56 5.45 0.18 1.4 × 10−2 8 × 1032 8 × 1032

ð1þÞ 2637.50� 0.05 53.9� 0.29 110 210 34.56 5.45 0.18 1.4 × 10−2 1 × 1033 1 × 1033

0.06% 156
66 Dy → 156

64 Gd
�� ½0þ� 1804� 7 −100.4� 0.10 110 110 50.24 50.24 1.14 4.5 × 10−2 1 × 1032 3 × 1032

0þ 1851.239� 0.007a −53.1� 0.10 110 110 50.24 50.24 1.14 4.5 × 10−2 5 × 1031 5 × 1031

0.14% 162
68 Er →

162
66 Dy

�� 0þ 1666.27� 0.20 −72.0� 0.30 110 110 53.79 53.79 1.19 5.1 × 10−2 5 × 1031 8 × 1031

1þ 1745.716� 0.007 −38.2� 0.30 110 210 53.79 9.05 0.25 3.0 × 10−2 3 × 1031 3 × 1031

1.601% 164
68 Er →

164
66 Dy

� 0þ 0 38.0� 0.12 110 210 53.79 9.05 0.31 3.0 × 10−2 1 × 1032 1 × 1032

0.014% 190
78 Pt →

190
76 Os

�� 1,2 1326.9� 0.5a −0.1� 0.47 110 410 73.87 0.65 0.07 5.2 × 10−2 3 × 1025 2 × 1029

−0.2� 0.47 110 411 73.87 0.55 0.04 5.1 × 10−2 5 × 1026 3 × 1030

aChannel with a known NME listed in Table IV.
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B. Decays of long-lived radionuclides

The radioactive elements are challenging to address exper-
imentally; if one chooses the longest-living ones, then the
experimental difficulties in working with such substances may
be minimized. We performed an analysis of weakly radio-
active elements with lifetimes of longer than a year using the
Brookhaven National Laboratory database. From the point of
view of resonant capture, two isotopes of gadolinium and
isotopes of mercury and lead are of interest. The half-life
estimates for these elements are presented in Table XIII. The
Q2EC values of the pairs are not well known; thus, column 5
reports two errors in the masses of the parent and daughter
nuclei. Column 4 shows the error in the excitation energy of
the daughter nuclide. The first column gives the half-life of the
radioactive parent nuclei with respect to the dominant decay.
At the present level of knowledge of the parameters of the
long-lived radionuclides, any of the channels listed in
Table XIII can be exactly resonant.

IX. CONCLUSIONS

Neutrino physics is a field of science characterized by a
wealth of ideas, a multitude of unsolved problems, and
mysteries that intrigue the imagination. Despite the more
than half a century that has passed since the discovery of
this particle, it remains the least understood among the
fermions of the standard model. Great hope is placed on
the study of 0ν2β− decay able to shed light on the type of
neutrinos (Dirac or Majorana) and on the total lepton
number conservation. However, numerous experimental
attempts to observe 0ν2β− decay have been unsuccessful
thus far.
In the steady stream of efforts devoted to the study of

2β− decay, the reverse process of 2EC was in the shadows
until recently. In this review, a comprehensive characteri-
zation of this process is presented, with a main focus on its
neutrinoless mode, which can give the same information
about the properties of the neutrino as the 0ν2β− decay. All
aspects, both theoretical and experimental, revealing in
detail unusual physical phenomena associated with the
manifestations of the properties of mysterious neutrinos are
considered.
To determine the possibility of observing the neutrinoless

2EC process in real experimental conditions, the lifetimes
of nuclides in which the resonant conditions can occur were
calculated. For realistic estimates it is necessary to describe
properties of electron shells of atoms and 2EC nuclear matrix
elements.
Atomic electron shells are involved in the 0ν2EC

process through the overlap of the electron wave functions
with the nucleus and the excitation energy of electron
shells. The short-distance electron wave functions are well
defined in the framework of the multielectron Dirac-
Hartree-Fock schemes. Valence electrons are bound by
several eV, so the excitation energy of the shells is close to
the double ionization potential. Experimental progress in
atomic spectroscopy made it possible to study multiple
ionization processes. Analysis of theoretical uncertainties
and comparison with the Auger spectroscopic data leads toTA
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the conclusion that the excitation energies of 0ν2EC can be
determined with an accuracy of 60 eV or better for heavy
atoms, which is comparable to the accuracy in measuring
the atomic masses in Penning traps and the deexcitation
width of electron shells. An improvement of theoretical
schemes or direct measurements of the excitation energy of
electron shells with quantum numbers relevant for the
0ν2EC process is of great interest.
The nuclear-theory frameworks used to evaluate the

nuclear wave functions involved in the nuclear matrix ele-
ments of the resonant neutrinoless 2EC transitions cover
theories based on the quasiparticle random-phase approxima-
tion (both spherical and deformed QRPAs), boson mapping
(IBM-2), or modern EDFs. The last two base the matrix-
element computations on the closure approximation, and only
the QRPA-based theories avoid the use of closure. On the
other hand, the IBM-2 and EDFs flexibly take into account
the deformation degree of freedom, as also to a certain extent
the deformed QRPA does.
The most straightforward are the matrix elements

involved in the ground-state-to-ground-state captures in the
deformed nuclei 152Gd, 156Dy, 164Er, and 180W. For these
nuclides the various theory frameworks (QRPA, IBM-2, EDF)
give consistent results within a factor of 2 to 3 for the values
of the nuclear matrix elements. Theoretical treatment of
the excited nuclear resonant states, particularly those with
high excitation energies, is a challenge. The problem is the
identification of the theoretical state that corresponds to the
resonant experimental state of a certain spin parity Jπ,
particularly when there are several experimental and theoreti-
cal states close to the resonant state. The intrinsic properties of
these close-lying states can vary strongly from one state to the
next, so selecting the proper state is essential for a reliable
prediction of the 2EC nuclear matrix element. This effect is
magnified in deformed nuclei, with possible coexisting
structures at approximately similar excitation energies.
At the quark-lepton level, the underlying physical LNV

mechanisms of the 0ν2EC, 0νECβþ, 0ν2βþ, and 0ν2β−

processes are essentially the same. In the standard model
represented by the sector of renormalized dimension-4
interactions the total number of leptons L is conserved.
The corresponding ΔL ¼ 2 contributions can appear via
nonrenormalizable effective operators of higher dimensions.
We specified all the operators up to dimension 9 and
discussed their possible high-scale origin from renormaliz-
able theories. We presented in some detail three popular
large-scale scenarios beyond the standard model. The con-
ventional mechanism of Majorana neutrino exchange is
highlighted by the fact that the corresponding operator has
a minimal dimension d ¼ 5.
The effective electron neutrino Majorana mass mββ deter-

mines the amplitudes of 0ν2β− decay and the 0ν2EC process.
We reported on the lower and upper half-life limits of 0ν2EC
for near-resonant nuclides with the known nuclear matrix
elements for the effective electron neutrino Majorana mass
of jmββj ¼ 100 meV.
The experimental sensitivity to the 0ν2EC process is

currently lower than that of the 0ν2β− decay. The strongest
0ν2EC half-life limits are approximately T1=2 ∼ 1021–1022 yr,

while the 0ν2β− experiments have already achieved the
sensitivity level of limT1=2 ∼ 1024–1026 yr. The highest
sensitivity to the 0ν2EC process to date has been achieved
using quite diverse experimental techniques: gaseous (78Kr),
scintillation (106Cd) and cryogenic scintillating bolometric
detectors (40Ca), HPGe γ spectrometry (36Ar, 58Ni, 96Ru,
112Sn), and geochemical methods (130Ba, 132Ba).
The prospects for finding 0ν2EC become more favorable

if a resonance effect in double-electron capture occurs, a
phenomenon that is peculiar to 0ν2EC. The resonant 0ν2EC
effect is expected to be clearly identified thanks to the high
accuracy of the γ-quanta energies expected in the decay, while
the background due to the neutrino accompanied decay (x ray
with energies up to several tens of keV) never plays a role in
practice (in contrast to the 0ν2β− experiments, where back-
ground caused by the 2νmode becomes dominant due to poor
energy or time resolution). The experimental sensitivity can be
significantly improved by increasing the amount of isotopes of
interest and utilization of enriched materials, by increasing the
detection efficiency, reducing the background, and providing
the highest possible energy resolution. HPGe detectors and
low-temperature bolometers appear to be the most suitable
detection techniques for 0ν2EC experiments, with a sensitivity
of T1=2 ∼ 1025–1026 yr. Moreover, the complicated signature
of the resonant effect can be a definite advantage, since the
energies of the γ quanta expected in most decays are tabulated
and usually known with a high accuracy, which will ensure
reliable identification of the effect.
The resonance in 2EC is associated with the degeneracy of

mother and intermediate daughter atomic states that can in
principle be fulfilled in 2EC only provided that the process is
neutrinoless. These conditions cannot occur in the 2β− decays.
However, an insufficiently accurate knowledge of the atomic
mass differences between the mother and daughter states has
blocked the realization of this possibility thus far.
The development of PTMS has radically altered this

situation. PTMS is superior to all other known methods of
mass spectrometry. It has successfully been used for the
determination of mass differences of nuclides with unprec-
edented low uncertainties down to the eV level. Mass
differences for 19 such pairs connected via 2EC and listed
in Tables VI and VII have been measured by PTMS, and new
measurements are still planned for other pairs.
The refined analysis shows that at 90% C.L. none of the

stable isotopes are exactly resonant when accompanied by
electron capture from favorable states ns1=2 and np1=2. Yet at
99% C.L. it is impossible to exclude the exactly resonant
character of the 190

78 Pt →
190
73 Os

�� decay to the excited state
1326.9� 0.5 keV of the daughter. For the vanishing degen-
eracy parameter and Jπ ¼ 1þ, the half-life appears to be
3.3 × 1026 yr. A more accurate knowledge of the Q2EC value,
the excitation energy, and Jπ of 190

76 Os
�� would certainly be

desirable. The 156
66 Dy → 156

64 Gd
�� decay to the excited state of

1988.5� 0.2 keV also demonstrates the proximity to the
resonance. The decay half-life 1.1 × 1028 yr is within the
99% confidence interval. For the ground-state-to-ground-state
transitions, the 152

64 Gd → 152
62 Sm

� decay with a lower half-
life limit of 7 × 1027 yr is the most encouraging case. The
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long-lived radionuclides listed in Table XIII can be resonant at
90% C.L.; however, production of these nuclides in significant
amounts is technically complex.
The data suggest that with further refinement of the

parameters the nuclides under discussion could become
competitive with nuclides that decay through the 0ν2β−

channel, for which the lower half-life limit is already set at
∼1026 yr. This level of sensitivity is also achievable for 2EC
processes. Moreover, since not all excited states of nuclides
are known experimentally, other, not yet identified, near-
resonant nuclides can also exist. Special demands are placed
on the nuclear spectroscopy for the search of new relevant
excited nuclear states and exact determination of the spin and
parity values for them.
The search for nuclides satisfying the resonance

condition in the 2EC process requires new experimental
and theoretical efforts. The experimental side should focus
on improving the accuracy of mass measurements by ion
traps, the search for new excited states of nuclides in the
resonance region, the determination of their excitation
energies and quantum numbers, and the determination of
the excitation energy of the electron shells using atomic
spectroscopy methods. The theory should be aimed at
refining theoretical schemes for calculating the 2EC half-
life. Further progress requires the joint efforts of theorists in
atomic, nuclear, and particle physics, as well as the develop-
ment and implementation of advanced technologies that are
already on the horizon. The double-electron capture process
can prove to be an important player in the world beyond the
standard model.

LIST OF SYMBOLS AND ABBREVIATIONS

0ν2β− neutrinoless double-beta decay
0ν2EC neutrinoless double-electron capture
2EC double-electron capture
Γ electromagnetic decay width
Δ degeneracy parameter ¼ Q minus the

total excitation energies of the nucleus
and electron shells

ϵ� excitation energy of electron shell
ν neutrino
νi ion frequencies in the trap
A mass number
CC charged current
C.L. confidence level
DEIP double-electron ionization potential
E� excitation energy of nucleus
EDF energy-density functional
FWHM full width at half maximum
GCM Generating Coordinate Method
g.s. ground state
GT Gamow-Teller beta-decay type
HO harmonic oscillator
HPGe high purity germanium detector
IBFFM interacting boson-fermion-fermion

model

IBFFM-2 proton-neutron IBFFM
IBFM-2 microscopic interacting boson-fermion

model
IBM interacting boson model
IBM-2 microscopic IBM
K, L, M, etc. orbitals of atomic electrons
LNV lepton number violation
LRSM left-right symmetric model
LQ leptoquark
M neutral atom mass value
MCM multiple-commutator model
MCP microchannel plate
MT measurement trap
m. (w.e.) meters of water equivalent
NME nuclear matrix element
PI-ICR phase-image ion-cyclotron resonance
PMNS Pontecorvo-Maki-Nakagawa-Sakata

mixing matrix
PT preparation trap
PTMS Penning-trap mass spectrometry
Q value-mass difference between neutral

parent and daughter atoms
QCD quantum chromodynamics
QED quantum electrodynamics
QRPA quasiparticle random-phase approxi-

mation
RGE renormalization group equation
SEIP single-electron ionization potential
SM standard model
SSB spontaneous symmetry breaking
SUSY supersymmetric model
RPV R-parity violating
T1=2 radioactive decay half-life
TOF-ICR time-of-flight ion-cyclotron resonance
Z atomic number
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