Заявка на участие в конкурсе научно-исследовательских работ НИЦ «Курчатовский институт» - ИТЭФ в разделе лучшая экспериментальная работа

Изучение распадов  ${\rm B_s^0}$ -мезонов с чармонием и многочастичными адронными состояниями в эксперименте LHCb

Автор работы: Беляев И.М., Голубков Д. Ю., Матюнин В.И. Никитин Н.В., Овсянникова Т. А., Перейма Д.Ю., Саврина Д. В.

## Краткий реферат работы

Изучение распадов  $B^0_s$ -мезонов с чармонием и многочастичными адронными состояниями в эксперименте LHCb

## Аннотация

Распады прелестных адронов в конечные состояния, содержащие с и анти-с кварки, представляют собой уникальную лабораторию для изучения свойств чармониев и чармониеподобных состояний. В таких распадах было обнаружено большое количество новых состояний, в том числе частица  $\chi_{c1}(3872)$ , пентакварки и многочисленные кандидаты в тетракварки, а также обычные чармониевые состояния. Природа многих экзотических чармониеподобных кандидатов остается неясной. Сравнение парциальных ширин таких систем по сравнению с обычными состояниями чармония в распадах прелестных адронов может пролить свет на механизмы их образования.

Данная работа посвящена исследованию распадов  $B_s^0$  мезона в многочастичное конечное состояние  $J/\psi \pi^+\pi^-K^+K^-$  на данных эксперимента LHCb, набранных при энергии протон-протонных (pp) столкновений в системе центра масс 7, 8 и 13 TeV и соответствующих интегральной светимости порядка 9 fb<sup>-1</sup>. В ходе исследования были измерены отношения парциальных ширин нескольких новых каналов. Проведено измерение массы  $B_s^0$  мезона с рекордной точностью. Впервые обнаружен кандидат на новое состояние X(4740) в спектре инвариантной массы  $J/\psi$  ф системы. Более подробно с результатами представленного анализа можно ознакомиться в работе [1].

Распады прелестных адронов являются уникальной системой для изучения очарованных мезонов и поиска новых экзотических мезонов. Особый интерес представляет узкое состояние  $\chi_{c1}(3872)$ , которое было открыто коллаборацией Belle в распадах  $B^+ \to J/\psi \pi^+ \pi^- K^+$  через распад  $\chi_{c1}(3872) \to J/\psi \pi^+ \pi^-$ . Состояние  $\chi_{c1}(3872)$  также было экспериментально зарегистрировано в распадах прелестных мезонов, в прямых протон-протонных и протон-антипротонных столкновениях. Несмотря на значительный объем полученных экспериментальных данных, природа этого состояния по-прежнему остается загадочной и не ясной. Измерение новых распадов через это состояние может помочь в определении его природы.

Кроме того, в 2016 году эксперимент LHCb обнаружил четыре тетракварка  $\chi_{c1}(4140),~\chi_{c1}(4274),~\chi_{c0}(4500)$  и  $\chi_{c0}(4700)$  в распадах заряженных прелестных мезонов в конечное состояние  $B^+ \to J/\psi \, \varphi K^+$ . Учитывая значительный теоретический интерес к возможным экзотическим адронным состояниям, распадающимся на  $J/\psi \, \varphi$  систему, изучение массового распределения такой системы поможет прояснить довольно неоднозначную экспериментальную ситуацию связанную со структурами в спектре масс  $J/\psi \, \varphi$  комбинации.

Данная работа посвящена исследованию распадов  $B_s^0$  мезона в многочастичное конечное состояние  $J/\psi \pi^+\pi^-K^+K^-$  на данных эксперимента LHCb, набранных при энергии протон-протонных (pp) столкновений в системе центра масс 7, 8 и 13 TeV и соответствующих интегральной светимости порядка 9 fb<sup>-1</sup>. В ходе исследования были проведены следующие ключевые этапы:

- Впервые обнаружены распады  $B_s^0 \to J/\psi K^{*0} \overline{K}^{*0}$  и  $B_s^0 \to \chi_{c1}(3872)(K^+K^-)$ , где пара  $K^-K^+$  не происходит из распадов  $\phi$  мезонов;
- поиск экзотических состояний на массе Ј/ $\psi \, \phi$ ;
- ullet измерены отношения парциальные ширины нескольких  ${\bf B}_{
  m s}^0$  распадов.
- измерение массы В<sub>s</sub>;

В результате перечисленных выше этапов, были измерены отношения парциальных ширин нескольких новых каналов:

$$\begin{split} \frac{\mathcal{B}_{B_s^0 \to \chi_{c1}(3872) \varphi} \times \mathcal{B}_{\chi_{c1}(3872) \to J/\psi \pi^+ \pi^-}}{\mathcal{B}_{B_s^0 \to \psi(2S) \varphi} \times \mathcal{B}_{\psi(2S) \to J/\psi \pi^+ \pi^-}} &= (2.42 \pm 0.23 \pm 0.07) \times 10^{-2} \,, \\ \frac{\mathcal{B}_{B_s^0 \to \psi(2S) \varphi} \times \mathcal{B}_{\psi(2S) \to J/\psi \pi^+ \pi^-}}{\mathcal{B}_{B_s^0 \to \psi(2S) \varphi} \times \mathcal{B}_{\psi(2S) \to J/\psi \pi^+ \pi^-} \times \mathcal{B}_{\varphi \to K^+ K^-}} &= 1.22 \pm 0.03 \pm 0.04 \,, \\ \frac{\mathcal{B}_{B_s^0 \to \chi_{c1}(3872)(K^+ K^-)_{\mathrm{non-}\varphi}}}{\mathcal{B}_{B_s^0 \to \chi_{c1}(3872) \varphi} \times \mathcal{B}_{\varphi \to K^+ K^-}} &= 1.57 \pm 0.32 \pm 0.12 \,, \end{split}$$

где первая ошибка статистическая, а вторая систематическая.

В распадах  $B_s^0 \to J/\psi \pi^+\pi^- \varphi$  был произведен поиск новых экзотических состояний в спектре масс  $J/\psi \varphi$  комбинации и было обнаружено значительное превышение количества событий над фазовым объемом, в районе массы 4.74  $GeV/c^2$  со статистической значимостью 5.3  $\sigma$ . В рамках проверок данного анализа наличие обнаруженного пика не может быть объяснено гипотезами об отражениях из известных каналов. Измеренные масса и ширина данного пика:

$$\begin{array}{lll} m_{\rm X(4740)} & = & 4741 \pm & 6 \pm & 6 \, {\rm GeV}/c^2 \, , \\ \Gamma_{\rm X(4740)} & = & 53 \pm 15 \pm 11 \, {\rm MeV}. \end{array}$$

в пределах ошибок согласуется с параметрами обнаруженного в эксперименте LHCb тетракварка  $\chi_{c0}(4700)$ . Однако на данный момент параметры  $\chi_{c0}(4700)$  измерены с недостаточной точностью, чтобы можно было отожествить эти два состояния. Также ширина и масса структуры согласуется с теоретическим предсказанием  $2^{++}$  состояния сs $\overline{cs}$ . Для того, чтобы учесть все сложные эффекты интерференции и установить является ли данное состояние новым или уже известным  $\chi_{c0}(4700)$ , требуется проведение полного амплитудного анализа.

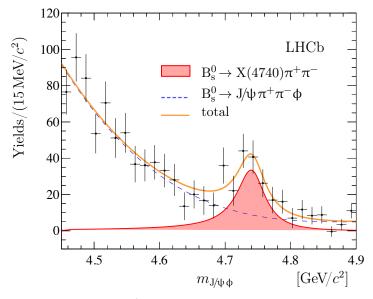



Рис. 1: : Распределения по массе  $J/\psi \, \varphi$  комбинации после вычитания фона отобранных  $B_s^0 \to J/\psi \, \pi^+ \pi^- \varphi$  кандидатов (точки с ошибками). Аппроксимация показана цветом [1].

Наконец было измерено значение массы  $B^0_s$  мезона с рекордной на текущий момент времени точностью с помощью распадов  $B^0_s \to \psi(2S) \varphi$ :

$$m_{\rm B_s^0} = 5366.98 \pm 0.07 \pm 0.13 \, {\rm MeV}/c^2 \,,$$

где первая ошибка статистическая, вторая систематическая. Результаты данной работы опубликованы в журнале JHEP [1].

Or KONKEKTABO OBSPOR

## Литература

[1] R. Aaij, et al. Study of  $B_s^0 \to J/\psi \pi^+\pi^-K^+K^-$  decays. JHEP, **02 (2021)** 024.